精英家教网 > 高中数学 > 题目详情
12.设函数y=f(x)的定义域为R,则“f(0)=0”是“函数f(x)为奇函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 函数y=f(x)的定义域为R,若函数f(x)为奇函数,则f(0)=0,反之不成立,例如f(x)=x2.即可判断出结论.

解答 解:函数y=f(x)的定义域为R,若函数f(x)为奇函数,则f(0)=0,反之不成立,例如f(x)=x2
∴“f(0)=0”是“函数f(x)为奇函数”的必要不充分条件.
故选:B.

点评 本题考查了函数的奇偶性、充要条件的判定,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\sqrt{x-2}$-$\sqrt{9-3x}$的值域为[-$\sqrt{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P(x,y)满足$\sqrt{(x-2)^{2}+(y-1)^{2}}$=$\frac{|3x+4y+12|}{5}$,则点P的轨迹是(  )
A.双曲线B.抛物线C.两条相交直线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={x|y=lg(4x2-4)},B={y|y=2x2-3},则A∩B=(  )
A.B.{x|-3≤x<-1,或x>1}C.{x|-3≤x≤-1,或x≥1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a=2,b=3,A=$\frac{π}{6}$,则cosB的值为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{5}$C.±$\frac{\sqrt{7}}{4}$D.±$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17. 设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A、B,点P在椭圆上,且异于A、B两点,O为坐标原点
(1)若直线AP与BP的斜率之积为-$\frac{3}{4}$,求椭圆的离心率.
(2)若椭圆的一个焦点为F(2,0),在(1)的条件下,椭圆上存在两点P、Q,满足$\overrightarrow{MP}$⊥$\overrightarrow{MQ}$,其中M(3,0)试求$\overrightarrow{PM}•\overrightarrow{PQ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a,b,c均为正数,且${2^a}={log_{\frac{1}{2}}}a,\;\;{(\frac{1}{2})^b}={log_{\frac{1}{2}}}b,{(\frac{1}{2})^c}={log_2}$c,则a,b,c由大到小的顺序为c>b>a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=f(x)的图象与y=lnx的图象关于y=x对称,则f(1)=(  )
A.1B.eC.e2D.ln(e-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“对任意实数x,x>0”的否定是?x∈R,x≤0.

查看答案和解析>>

同步练习册答案