精英家教网 > 高中数学 > 题目详情

已知函数在点处的切线方程为,且对任意的恒成立.
(Ⅰ)求函数的解析式;
(Ⅱ)求实数的最小值;
(Ⅲ)求证:).

(Ⅰ) (Ⅱ) 
(Ⅲ)先证,累加即得.

解析试题分析:(Ⅰ)将代入直线方程得,∴① 
,∴②  
联立,解得                                
(Ⅱ),∴上恒成立;
恒成立;         

∴只需证对于任意的                 


1)当,即时,,∴
单调递增,∴                 
2)当,即时,设是方程的两根且
,可知,分析题意可知当时对任意
,∴                              
综上分析,实数的最小值为.                             
(Ⅲ)令,有恒成立;
,得        

∴原不等式得证.  
考点:利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法;不等式的证明.
点评:本题考查了利用导数研究函数的切线方程问题,在曲线上某点处的切线的斜率就是该点的导数值,考查了导数在最大值和最小值中的应用,体现了数学转化思想和分类讨论的数学思想.特别是(Ⅲ)的证明,用到了放缩法和裂项相消,此题属难度较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数
(1)时,求函数的单调区间;
(2)时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=x2+x-.
(I)若定义域为[0,3],求f(x)的值域;
(II)若f(x)的值域为[-],且定义域为[a,b],求b-a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值; 
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求当时,函数的表达式;
(2)作出函数的图象,并指出其单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论单调区间;
(2)当时,证明:当时,证明:

查看答案和解析>>

同步练习册答案