精英家教网 > 高中数学 > 题目详情

【题目】以下命题:(1)已知三个不同的平面,若,则;(2)若直线与平面所成角都是,则这两条直线平行;(3)若直线与平面所成角都是,则这两条直线不可能垂直;(4)设直线与平面相交但不垂直,则在平面内有且只有一条直线与直线垂直.错误的个数是(

A.B.C.D.

【答案】D

【解析】

结合图象及反例,逐项验证,(1)中可能平行也可能相交,(2)(3)中两条直线可能平行,也可能相交,还可能异面,(4)中平面内有无数直线与直线垂直.

对于(1),若,则可能平行也可能相交,所以不正确;

对于(2),若直线与平面所成角都是,则这两条直线可能平行,也可能相交,还可能异面,如图,所以不正确;

对于(3),由(2)可知两条直线可能垂直,所以不正确;

对于(4),直线与平面相交但不垂直,则在平面内有无数直线与直线垂直,且这些直线相互平行,所以不正确;

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆轴相切,且与圆外切;

(1)求动圆圆心的轨迹的方程;

(2)若直线过定点,且与轨迹交于两点,与圆交于两点,若点到直线的距离为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018101日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

免征额3500

免征额5000

级数

全月应纳税所得额

税率

级数

全月应纳税所得额

税率

1

不超过1500元的部分

1

不超过3000元的部分

2

超过1500元至4500元的部分

2

超过3000元至12000元的部分

3

超过4500元至9000元的部分

3

超过12000元至25000元的部分

1)已知小李20189月份上交的税费是295元,10月份工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?

2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.

i)请根据频率分布直方图估计该公司员工税前收入的中位数;

ii)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数.

1)若,求的解析式;

2)当时,对任意的恒成立,求实数的取值范围;

3)设函数在两个不同零点,将关于的不等式的解集记为.已知函数的最小值为,且函数上不存在最小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数是自然对数的底数).

(Ⅰ)讨论函数极值点的个数;

(Ⅱ)若,且命题“”是假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国家统计局公布的2013-2018年入境游客(单位:万人次)的变化情况,则下列结论错误的是(

A.2014年我国入境游客万人次最少

B.4年我国入境游客万人次呈逐渐增加趋势

C.6年我国入境游客万人次的中位数大于13340万人次

D.3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

1)求证:平面平面

2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种水箱用的浮球是由两个相同半球和一个圆柱筒组成,它的轴截面如图所示,已知半球的直径是,圆柱筒高,为增强该浮球的牢固性,给浮球内置一双蝶形防压卡,防压卡由金属材料杆,,,,,焊接而成,其中,分别是圆柱上下底面的圆心,均在浮球的内壁上,ACBD通过浮球中心,且均与圆柱的底面垂直.

1)设与圆柱底面所成的角为,试用表示出防压卡中四边形的面积,并写出的取值范围;

2)研究表明,四边形的面积越大,浮球防压性越强,求四边形面积取最大值时,点到圆柱上底面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:定义在上的函数的极大值为.

1)求实数的值;

2)若关于的不等式有且只有一个整数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案