【题目】已知函数.
⑴当时,求函数的极值;
⑵若存在与函数,的图象都相切的直线,求实数的取值范围.
【答案】(1)当时,函数取得极小值为,无极大值;(2)
【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是.
试题解析:
(1)函数的定义域为
当时,,
所以
所以当时,,当时,,
所以函数在区间单调递减,在区间单调递增,
所以当时,函数取得极小值为,无极大值;
(2)设函数上点与函数上点处切线相同,
则
所以
所以,代入得:
设,则
不妨设则当时,,当时,
所以在区间上单调递减,在区间上单调递增,
代入可得:
设,则对恒成立,
所以在区间上单调递增,又
所以当时,即当时,
又当时
因此当时,函数必有零点;即当时,必存在使得成立;
即存在使得函数上点与函数上点处切线相同.
又由得:
所以单调递减,因此
所以实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为和,且,若平面平面,以下四个结论中正确的是( )
A.平面
B.
C.若E是底面圆周上的动点,则的最大面积等于的面积
D.l与平面所成的角为45°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次考试结束,甲、乙、丙三位同学聚在一起聊天.甲说:“你们的成绩都没有我高”乙说:“我的成绩一定比丙高 ”丙说:“你们的成绩都比我高 ”成绩公布后,三人成绩互不相同且三人中恰有一人说得不对,若将三人成绩从高到低排序,则甲排在第______名
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆与轴相切于点,与轴正半轴交于两点,(在的上方),且.
(1)求圆的标准方程;
(2)过点作任一条直线与圆:相交于,两点.
①求证:为定值,并求出这个定值;
②求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知点A,B的坐标分别为(3,0),(-3,0),直线AP,BP相交于点P,且它们的斜率之积是-2,求动点P的轨迹方程.
(2)设P(x,y),直线l1:x+y=0,l2:x-y=0.若点P到l1的距离与点P到l2的距离之积为2,求动点P的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com