精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-2sin2(x-
θ
2
)+sin(2x-θ),θ∈(0,
π
2
)
是定义在R 上的奇函数.
(1)求θ的值和函数f(x)的单调递减区间;
(2)若三角形ABC三个内角A、B、C的对应边分别为a、b、c,△ABC的面积等于函数f(A)的最大值,求f(A)取最大值时a的最小值.
分析:(1)首先化简函数f(x),根据奇函数可知f(0)=0,以及θ的范围求出θ的值;由正弦函数的单调减区间,求得f(x)的单调减区间;
(2)先利用正弦的值域求得f(A)≤
2
,当A=
π
4
时等于三角形的面积,然后根据S△ABC=
1
2
bcsinA
,求得bc=4,进而由余弦定理和放缩求得a 的最小值.
解答:解:(1)f(x)=1-2sin2(x-
θ
2
)+sin(2x-θ)
=cos(2x-θ)+sin(2x-θ)=
2
sin(2x-θ+
π
4
)
(2分)
∵函数f(x)是定义在R上的奇函数,∴f(-x)=-f(x),易知f(0)=0,由f(0)=
2
sin(
π
4
-θ)=0
,∴sin(
π
4
-θ)=0
,∵θ∈(0,
π
2
)
,∴
π
4
-θ=0
,∴θ=
π
4
.(4分)
此时f(x)=
2
sin(2x-
π
4
+
π
4
)=
2
sin2x
为R上的奇函数,∴θ=
π
4
符合题意(5分)
又由2kπ+
π
2
≤2x≤2kπ+
2
,k∈Z
,得kπ+
π
4
≤x≤kπ+
4
,k∈Z

∴函数f(x)的单调递减区间为[kπ+
π
4
,kπ+
4
],(k∈Z)
(7分)
(2)f(A)=
2
sin2A≤
2
 
(当sin2A=1,即A=
π
4
时取等号)

当A=
π
4
时,S△ABC=f(A)max=
2
,(9分)S△ABC=
1
2
bcsinA=
1
2
bcsin
π
4
=
2
4
bc=
2
,∴bc=4,(10分)
由余弦定理可以知道a2=b2+c2-2bccosA=b2+c2-2bccos
π
4
≥2bc-
2
bc=4(2-
2
)
,(12分)
a≥2
2-
2
 
(当且仅当b=c时取等号)

∴a的最小值是2
2-
2
(14分)
点评:本题考查了三角函数的最值和单调性,对于(2)问,注意放缩和余弦定理的运用,本题综合性强,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案