精英家教网 > 高中数学 > 题目详情

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

14551495

1

002

14951535

4

008

15351575

20

040

15751615

15

030

16151655

8

016

16551695

m

n

合 计

M

N

1)求出表中所表示的数分别是多少?

2)画出频率分布直方图.

3)全体女生中身高在哪组范围内的人数最多?由直方图确定此组数据中位数是多少?

【答案】(1004,2)略(3) 在1535 1575范围内最多

【解析】试题分析:(1)利用频数比频率等于样本个体数可得出M,从而得出m;频率之和等于1可得Nn

3)频率分布表中频数越大的,落在该组的样本数就越多,数据两边的个体数相同(或者说两边的样本概率相等),那么这个数就是样本的中位数。

试题解析:(1

2)略

3)由第(1)问及表格数据知,在范围内最多(另也可通过频率分布直方图看出)。 中 位数两边的样本数量相同,即两边的样本概率相等。因1575两边的样本概率均为05,所以中位数为1575

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1,求函数图象在处的切线方程;

2,试讨论方程的实数解的个数;

3时,若对于任意的,都存在,使得,求满足条件的正整数的取值的集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D.

(1)若,求直线的方程;

(2)设直线AD,CB的斜率分别为,若,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为(

A.0.59 B.0.54 C.0.8 D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:对于任意时,

(1)若,求证:为等比数列;

(2)若

求数列的通项公式;

是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.

(1)已知中间三个年龄段的网上购票人数成等差数列,求的值;

(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:

年龄在岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这5人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为.求:

(1)tan(α+β)的值;

(2)α+2β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)满足fx+y=fx+fy),当x0时,有,且f1=﹣2

1)求f0)及f﹣1)的值;

2)判断函数fx)的单调性,并利用定义加以证明;

3)求解不等式f2x﹣fx2+3x)<4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,DA⊥平面ABEAEEBBC=2,

BF⊥平面ACE,且点FCE上.

(1)求证:AEBE

(2)求三棱锥DAEC的体积;

(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N

使得MN∥平面DAE.

查看答案和解析>>

同步练习册答案