精英家教网 > 高中数学 > 题目详情
9.如图,直角梯形OABC中,∠COA=∠OAB=$\frac{π}{2}$,OC=2,OA=AB=1,SO⊥平面OABC,且SO=1,点M为SC的中点.
(Ⅰ)求证:BM∥平面SOA;
(Ⅱ)求二面角O-SC-B的余弦值.

分析 解法一:(Ⅰ)取SO的中点G,连接MG、AG.说明MG∥OC,推出MG∥AB,得到BM∥AG,然后证明BM∥平面SOA.
(Ⅱ)以OC,OA,OS所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系O-xyz.求出平面SOC的一个法向量,平面SCB的一个法向量,利用空间向量的数量积求解二面角O-SC-B的余弦值.
解法二:(Ⅰ)以OC,OA,OS所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系O-xyz,求出$\overrightarrow{BM}=(0,-1,\frac{1}{2})$,求出平面SOA的一个法向量,利用$\overrightarrow{BM}•\overrightarrow{OC}=0$,推出BM∥平面SOA.
(Ⅱ)求出平面SOC的一个法向量,平面SCB的一个法向量,利用空间向量的数量积,求解即可.

解答 (本小题满分12分)
解法一:(Ⅰ)取SO的中点G,连接MG、AG.
故MG∥OC,且$MG=\frac{1}{2}OC$,…(1分)
又由已知,AB∥OC,且$AB=\frac{1}{2}OC$,所以MG∥AB,且MG=AB,即四边形MGAB为平行四边形 …(2分)
故BM∥AG…(3分)
又因为BM?平面SOA,AG?平面SOA,…(4分)
所以BM∥平面SOA.…(5分)
(Ⅱ)由SO⊥平面OABC,$∠COA=\frac{π}{2}$,故OS,OC,OA两两垂直,分别以OC,OA,OS
所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系O-xyz.…(6分)
则O(0,0,0),B(1,1,0),C(2,0,0),S(0,0,1),A(0,1,0)
因为OA⊥平面SOC,故$\overrightarrow{OA}=(0,1,0)$即为平面SOC的一个法向量,…(7分)
设平面SCB的一个法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=0}\\{\overrightarrow{n}•\overrightarrow{SB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}2x-z=0\\ x+y-z=0\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,1,2).…(9分)
故$cos<\overrightarrow n,\overrightarrow{OA}>=\frac{{\overrightarrow n•\overrightarrow{OA}}}{{|\overrightarrow n|•|\overrightarrow{OA|}}}=\frac{1}{{\sqrt{6}}}=\frac{{\sqrt{6}}}{6}$.…(11分)
即二面角O-SC-B的余弦值为$\frac{{\sqrt{6}}}{6}$…(12分)
解法二:(Ⅰ)由SO⊥平面OABC,$∠COA=\frac{π}{2}$,故OS,OC,OA
两两垂直,分别以OC,OA,OS所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系O-xyz…(1分)
则$O(0,0,0),B(1,1,0),C(2,0,0),S(0,0,1),M(1,0,\frac{1}{2})$,故$\overrightarrow{BM}=(0,-1,\frac{1}{2})$,…(2分)
因为OC⊥平面SOA,故$\overrightarrow{OC}=(2,0,0)$是平面SOA的一个法向量.…(3分)
因为$\overrightarrow{BM}•\overrightarrow{OC}=0$,故$\overrightarrow{BM}⊥\overrightarrow{OC}$,…(4分)
而BM?平面SOA,所以BM∥平面SOA.…(5分)
(Ⅱ)因OA⊥平面SOC,故$\overrightarrow{OA}=(0,1,0)$即为平面SOC的一个法向量 …(7分)
设平面SCB的一个法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=0}\\{\overrightarrow{n}•\overrightarrow{SB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}2x-z=0\\ x+y-z=0\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,1,2).…(9分)
故$cos<\overrightarrow n,\overrightarrow{OA}>=\frac{{\overrightarrow n•\overrightarrow{OA}}}{{|\overrightarrow n|•|\overrightarrow{OA|}}}=\frac{1}{{\sqrt{6}}}=\frac{{\sqrt{6}}}{6}$.…(11分)
即二面角O-SC-B的余弦值为$\frac{{\sqrt{6}}}{6}$.…(12分)

点评 本题考查空间向量的数量积的应用,二面角的平面镜的求法,考查直线与平面平行的判定定理的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,则不等式f(x)<2的解集为$(-\sqrt{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某重点高中拟把学校打造成新型示范高中,为此制定了很多新的规章制度,新规章制度实施一段时间后,学校就新规章制度的认知程度随机抽取100名学生进行问卷调查,调查卷共有20个问题,每个问題5分,调查结束后,发现这100名学生的成绩都在[75,100]内,按成绩分成5组:第1组[75,80),第2组[80,85)第3组[85,90),第4组[90,95),第5组[95,100],绘制成如图所示的频率分布直方图,已知甲、乙、丙上分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对新规取章制度作深入学习.
(1)求这100人的平均得分(同-组数据用该区间的中点值作代表);
(2)求第3,4,5组分别选取的人数;
(3)若甲、乙、丙都被选取对新规章制度作深人学习,之后要从这6人随机选取人2再全面考查他们对新规章制度的认知程度,求甲、乙、丙这3人至多有一人被选取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在长方体ABCD-A1B1C1D1中,底面ABCD的边长为a的正方形,E是CC1的中点,若该长方体的外接球的表面积为10πa2,则异面直线AE与C1D1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知命题p:?x∈R,x<-1,则该命题的否定是¬p:?x∈R,x≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=2sin(ωx-$\frac{π}{6}$)-1最小正周期是π,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A1B1C1D1中.
(1)求D1B与平面ABCD所成的角的正弦;
(2)求二面角B1-AC-B的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.表面积为3π的圆锥的侧面展开图是一个半圆,则该圆锥的底面圆半径为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,则z=x+2y的最大值为(  )
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

同步练习册答案