20£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨sinx£¬sin£¨x-$\frac{¦Ð}{2}$£©£©£¬$\overrightarrow{n}$=£¨cos£¨x+$\frac{¦Ð}{6}$£©£¬cosx£©£¬º¯Êýf£¨x£©=$\overrightarrow{m}$•£¨$\overrightarrow{m}$+$\overrightarrow{n}$£©£®
£¨1£©Çóf£¨x£©µÄÖµÓò£»
£¨2£©½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒƽÒÆa¸öµ¥Î»£¨a£¾0£©£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Èôg£¨x£©ÔÚx=$\frac{¦Ð}{2}$´¦È¡µÃ×î´óÖµ£¬ÇóaµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÌõ¼þÀûÓÃÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬Èý½ÇºãµÈ±ä»»£¬ÕýÏÒº¯ÊýµÄÖµÓò£¬ÇóµÃf£¨x£©µÄÖµÓò£®
£¨2£©ÓÐÌõ¼þÀûÓú¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÒÔ¼°ÕýÏÒº¯ÊýµÄ×î´óÖµ£¬ÇóµÃaµÄ×îСֵ£®

½â´ð ½â£º£¨1£©º¯Êýf£¨x£©=$\overrightarrow{m}$•£¨$\overrightarrow{m}$+$\overrightarrow{n}$£©=${\overrightarrow{m}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=1+sinx•cos£¨x+$\frac{¦Ð}{6}$£©+sin£¨x-$\frac{¦Ð}{2}$£©•cosx
=1+sinx£¨$\frac{\sqrt{3}}{2}$•cosx-$\frac{1}{2}$sinx£©-cos2x=1+$\frac{\sqrt{3}}{4}$sin2x-$\frac{1}{2}$-$\frac{1}{2}•\frac{1+cos2x}{2}$=$\frac{1}{4}$+$\frac{1}{2}$sin£¨2x-$\frac{¦Ð}{6}$£©£¬
¹Êf£¨x£©µÄÖµÓòΪ[-$\frac{1}{4}$£¬$\frac{3}{4}$]£®
£¨2£©½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒƽÒÆa¸öµ¥Î»£¨a£¾0£©£¬µÃµ½º¯Êýg£¨x£©=$\frac{1}{2}$sin£¨2x-2a-$\frac{¦Ð}{6}$£©+$\frac{1}{4}$ µÄͼÏó£¬
Èôg£¨x£©ÔÚx=$\frac{¦Ð}{2}$´¦È¡µÃ×î´óÖµ£¬Ôò ¦Ð-2a-$\frac{¦Ð}{6}$=2k¦Ð+$\frac{¦Ð}{2}$£¬¼´a=-k¦Ð+$\frac{¦Ð}{6}$£¬k¡ÊZ£¬
¹ÊaµÄ×îСֵΪ$\frac{¦Ð}{6}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬Èý½ÇºãµÈ±ä»»£¬ÕýÏÒº¯ÊýµÄÖµÓò£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®º¯¶Øy=f£¨x£©=sin2x+$\sqrt{2}acos$£¨x+$\frac{¦Ð}{4}$£©£¨x¡ÊR£©£¬Áît=sinx-cosx£®
£¨1£©°Ñº¯Êýf£¨x£©±íʾΪ¹ØÓÚtµÄº¯Êýg£¨t£©£¬Çóg£¨t£©±í´ïʽºÍ¶¨ÒåÓò£»
£¨2£©Çóy=f£¨x£©µÄ×î´óÖµh£¨a£©£»
£¨3£©½â·½³Ìh£¨a£©=h£¨$\frac{a}{a-3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®±È½Ï´óС£º£¨1£©1.72.5£¼1.73£»£¨2£©1.70.3£¾0.93.1£»log${\;}_{\sqrt{2}}$0.5£¼log${\;}_{\sqrt{3}}$$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÉèÈ«¼¯I=R£¬A={x|x£¾1}£¬B={x|x¡Ü2}£¬ÇóA¡ÉB£¬A¡ÈB£¬∁UA£¬∁UB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¹ØÓÚÖ±Ïß1ºÍƽÃæ¦Á£¬¦Â£¬ÓÐÈçÏÂÈý¸öÃüÌ⣺
¢ÙÈôÖ±ÏßlÓëƽÃæ¦ÁÄÚµÄÈÎÒâÒ»ÌõÖ±Ï߶¼Ã»Óй«¹²µã£¬Ôò1¡Î¦Á£»
¢ÚÈôƽÃæ¦ÁÄÚµÄÈÎÒâÒ»ÌõÖ±ÏßÓëƽÃæ¦Â¶¼Ã»Óй«¹²µã£¬Ôò¦Á¡Î¦Â£»
¢ÛÈôÖ±Ïß1ÓëƽÃæ¦ÁÄÚµÄÈÎÒâÒ»ÌõÖ±Ï߶¼´¹Ö±£¬Ôòl¡Í¦Á£®
ÔÚÉÏÊöÈý¸öÃüÌâÖУ¬ÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô4sin2¦Á-5sin¦Ácos¦Á-cos2¦Á=2£¬Ôòtan¦Á=3»ò$-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨¦Á£¾b£¾0£©µÄ³¤°ëÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±Ïßy=kx+2ÓëÍÖÔ²C½»ÓÚA£¬BÁ½¸ö²»Í¬µã£¬µãE£¨1£¬0£©ÔÚÒÔABΪֱ¾¶µÄÔ²µÄÍⲿ£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýg£¨x£©=3x+a•3-x£¬x¡ÊR£®

£¨1£©Èôf£¨x£©ÊÇRÉϵÄżº¯Êý£¬ÇóaµÄÖµ£»
£¨2£©Èôa=0£¬ÔÚ¸ø¶¨µÄ×ø±êϵÖл­³öº¯Êýg£¨x£©=$\left\{\begin{array}{l}{f£¨x£©+1£¨x£¼0£©}\\{-x+2£¨x¡Ý0£©}\end{array}\right.$µÄͼÏ󣨲»ÁÐ±í£©²¢Ö¸³ö·½³Ìg£¨x£©-m=0ÓÐÁ½½âʱmµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôa£¼0£¬ÅжϺ¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨3sinx£¬cosx£©£¬$\overrightarrow{n}$=£¨-cosx£¬$\sqrt{3}$cosx£©£¬f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{\sqrt{3}}{2}$£®
£¨I£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ¼°È¡µÃ×î´óֵʱxµÄÖµ£»
£¨¢ò£©Èô·½³Ìf£¨x£©=aÔÚÇø¼ä[0£¬$\frac{¦Ð}{2}$]ÉÏÓÐÁ½¸ö²»Í¬µÄʵÊý¸ù£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸