精英家教网 > 高中数学 > 题目详情
在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=45°,AB=2CD=2,M为腰BC的中点,则=   
【答案】分析:以直角梯形的两个直角边为坐标轴,写出点的坐标,求出向量的坐标,利用向量数量积的坐标形式的公式求.
解答:解:以A为原点,AB为x轴,AD为y轴,建立直角坐标系.
则:A(0,0),B(2,0),D(0,1),C(1,1),M(
因为AB=2CD=2,∠B=45,所以AD=DC=1,M为腰BC的中点,
则M点到AD的距离=(DC+AB)=,M点到AB的距离=DA=
所以
所以 =-=2.
故答案为2.
点评:本题考查通过建立直角坐标系将几何问题问题转化为代数问题;考查向量的坐标形式的数量积公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
12
AB=a(如图),将△ADC沿AC折起,使D到D′.记面ACD′为α,面ABC为β,面BCD′为γ.
精英家教网
(1)若二面角α-AC-β为直二面角(如图),求二面角β-BC-γ的大小;
精英家教网
(2)若二面角α-AC-β为60°(如图),求三棱锥D′-ABC的体积.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)如图,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,动点P在△BCD内运动(含边界),设
AP
AB
AD
(α,β∈R)
,则α+β的取值范围是
[1,
4
3
]
[1,
4
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=
3
2
,BC=
1
2
,椭圆以A、B为焦点且经过点D.
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)以该椭圆的长轴为直径作圆,判断点C与该圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,则梯形ABCD的面积为
8
8
,点A到BD的距离AH=
4
5
4
5

查看答案和解析>>

同步练习册答案