精英家教网 > 高中数学 > 题目详情
函数f(x)=log3|2x+a|的图象的对称轴方程为x=2,则常数a=
-4
-4
分析:g(x)=log3|2x|为偶函数,对称轴为y轴,即x=0,根据图象的平移列出关于a的方程,由此能求出a.
解答:解:易知g(x)=log3|2x|为偶函数,
∴对称轴为y轴,即x=0,
又f(x)=log3|2x+a|=f(x)=log3|2(x+
1
2
a)|,
∴g(x)=log3|2x|向右平移-
1
2
a
个单位即可得f(x)=log3|2x+a|,
∴函数f(x)=log3|2x+a|的图象的对称轴方程为x=-
1
2
a
=2
∴a=-4,
故答案为:-4.
点评:本题考查对数函数的性质和应用,涉及了函数图象的变换的应用,注意偶函数的对称轴的灵活运用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案