精英家教网 > 高中数学 > 题目详情

【题目】函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象(

A.关于点对称B.关于点对称

C.关于直线对称D.关于直线对称

【答案】C

【解析】

根据函数的最小正周期为,求出,向左平移个单位后得到的函数为奇函数,求出,可得出的解析式,结合三角函数的性质可得出对称中心和对称轴,由此判断即可求得答案.

根据三角函数的图象与性质,可得,因为,所以

所以

的图象向左平移个单位后得到的函数为

为奇函数,则,(),即

因为,所以,所以

,()解得,所以关于点,()对称

A项,不存在整数,使得,故A项错误;

B项,不存在整数,使得,故B项错误;

()解得,所以关于直线()对称

C项,当时,,故关于直线对称,故C项正确;

D项,不存在整数,使得,故D项错误.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.201911日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.

新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:

旧个税税率表(个税起征点3500)

新个税税率表(个税起征点5000)

缴税级数

每月应纳税所得额(含税)=收入-个税起征点

税率(%)

每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除

税率(%)

1

不超过1500元部分

3

不超过3000元部分

3

2

超过1500元至4500元部分

10

超过3000元至12000元部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元至55000元部分

30

超过35000元至55000元部分

30

···

···

···

···

···

随机抽取某市1000名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000/,子女教育每孩1000/,赡养老人2000/月等。

假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:

1)设该市该收入层级的从业者2019年月缴个税为,的分布列和期望;

2)根据新旧个税方案,估计从20191月开始,经过多少个月,该市该收入层级的从业者各月少缴交的个税之和就超过2019年的月收入?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲船在岛的正南处,以4千米/时的速度向正北方向航行,千米,同时乙船自岛出发以6千米/时向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间为(

A.B.C.D.2.15h

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为为参数).

(1)写出点的直角坐标及曲线的直角坐标方程;

(2)若为曲线上的动点,求的中点到直线 的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为曲线.

1)求曲线的方程;

2)设过点的直线与曲线相交于两点(点两点之间).是否存在直线使得?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的为( )

A. 由金、银、铜、铁可导电,猜想:金属都可导电

B. 猜想数列的通项公式为

C. 半径为的圆的面积,则单位圆的面积

D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.

(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;

(2)设四个多功能运动场一个月内各场使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:

10

15

20

25

30

35

40

2302

2708

2996

3219

3401

3555

3689

2.49

2.99

3.55

4.00

4.49

4.99

5.49

(i)用最小二乘法求之间的回归直线方程;

(ii)叫做运动场月惠值,根据(i)的结论,试估计这四个多功能运动场月惠值最大时的值.

参考数据和公式:

.

查看答案和解析>>

同步练习册答案