精英家教网 > 高中数学 > 题目详情

【题目】携号转网,也称作号码携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务.20191127日,工信部宣布携号转网在全国范围正式启动.某运营商为提质量保客户,从运营系统中选出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为,服务水平的满意率为,对业务水平和服务水平都满意的客户有180人.

(Ⅰ)完成下面列联表,并分析是否有的把握认为业务水平与服务水平有关;

对服务水平满意人数

对服务水平不满意人数

合计

对业务水平满意人数

对业务水平不满意人数

合计

(Ⅱ)为进一步提高服务质量,在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用表示对业务水平不满意的人数,求的分布列与期望;

(Ⅲ)若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为,只对其中一项不满意的客户流失率为,对两项都不满意的客户流失率为,从该运营系统中任选4名客户,则在业务服务协议终止时至少有2名客户流失的概率为多少?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)列联表详见解析,有的把握认为业务水平满意与服务水平满意有关;(Ⅱ)分布列详见解析,期望为;(Ⅲ)

【解析】

(Ⅰ)根据所给数据列表,计算后比较临界值即可得出结论;

(Ⅱ)根据超几何分布得出随机变量的概率,列出分布列求期望即可;

(Ⅲ)由互斥事件和的概率公式计算运营系统中任选一名客户流失的概率,从运营系统中任选4名客户流失人数服从二项分布 ,根据二项分布求解即可.

(Ⅰ)由题意知对业务满意的有260人,对服务不满意的有100人,得列联表

对服务水平满意人数

对服务水平不满意人数

合计

对业务水平满意人数

180

80

260

对业务水平不满意人数

20

20

40

合计

200

100

300

经计算得

所以有的把握认为业务水平满意与服务水平满意有关.

(Ⅱ)的可能值为012

0

1

2

(Ⅲ)在业务服务协议终止时,对业务水平和服务水平都满意的客户流失的概率为,只有一项满意的客户流失的概率为,对二者都不满意的客户流失的概率为

所以从运营系统中任选一名客户流失的概率为

故在业务服务协议终止时,从运营系统中任选4名客户,至少有2名客户流失的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着社会的发展与进步,传播和存储状态已全面进入数字时代,以数字格式存储,以互联网为平台进行传输的音乐——数字音乐已然融入了我们的日常生活.虽然我国音乐相关市场仍处在起步阶段,但政策利好使音乐产业逐渐得到资本市场更多的关注.对比如下两幅统计图,下列说法正确的是( )

2011-2018年中国音乐产业投融资事件数量统计图

2013-2021年中国录制音乐营收变化及趋势预测统计图

A.2011~2018年我国音乐产业投融资事件数量逐年增长

B.2013~2018年我国录制音乐营收与音乐产业投融资事件数量呈正相关关系

C.2016年我国音乐产业投融资事件的平均营收约为亿美元

D.2013~2019年我国录制音乐营收年增长率最大的是2018

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数同时满足下列两个条件:①对任意的恒有成立;②当时,.记函数,若函数恰有两个零点,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在常数,使对任意的,都有,则称数列数列.

1)已知是公差为2的等差数列,其前n项和为.数列,求的取值范围;

2)已知数列的各项均为正数,记数列的前n项和为,数列的前n项和为,且.

①求证:数列是等比数列;

②设,试证明:存在常数,对于任意的,数列都是数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则

性别

甲专业报考人数

乙专业报考人数

性别

甲专业录取率

乙专业录取率

100

400

300

100

A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高

C.男生比女生的录取率高D.女生比男生的录取率高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc.已知a2+c2b2ac.

1)求cosBtan2B的值;

2)若b3A,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆柱中,AB为圆的直径,的两个三等分点,EAFCGB都是圆柱的母线.

1)求证:平面ADE

2)设BC=1,已知直线AF与平面ACB所成的角为30°,求二面角AFBC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,.已知分别是的中点.沿折起,使的位置且二面角的大小是60°,连接,如图:

1)证明:平面平面

2)求平面与平面所成二面角的大小.

查看答案和解析>>

同步练习册答案