精英家教网 > 高中数学 > 题目详情

当一个非空数集满足条件“如果,并且当时,”时,我们就称为一个数域.以下四个关于数域命题:①是任何数域的元素;②若数域中有非零元素,则;③集合是一个数域;④有理数集是一个数域.其中正确命题的序号为       .

①②④

解析考点:命题的真假判断与应用.
分析:根据新定义:“如果a,b∈F,则a+b,a-b,a?b∈F,并且当b≠0时, ∈F”时,我们就称F为一个数域,对①②③④进行一一验证,可以利用特殊值法进行判断;
解:①根据新定义a,b∈F,∈F,对于a=0,可得0∈F,故①正确;
②若数域F中有非零元素,F可以取实数域,可取a=2010,b=1,可得2010+1=2011∈F,故②正确;
③集合p={x|x=3k,k∈Z},p中都是3的倍数,取k=1,k=2,可得a=3,b=6,可得=?p,故③错误;
④有理数是一个数域为F,对已任意a,b∈F,a+b,a-b,a?b∈F,并且当b≠0时,∈F”,故④正确;
故答案为:①②④;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当一个非空数集F满足条件“如果a,b∈F,则a+b,a-b,a•b∈F,并且当b≠0时,
ab
∈F”时,我们就称F为一个数域.以下四个关于数域命题:
①0是任何数域的元素;
②若数域F中有非零元素,则2011∈F;
③集合p={x|x=3k,k∈Z}是一个数域;
④有理数是一个数域.
其中正确命题的序号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州市高三调研考试理数 题型:填空题

当一个非空数集满足条件“如果,并且当时,”时,我们就称为一个数域.以下四个关于数域命题:①是任何数域的元素;②若数域中有非零元素,则;③集合是一个数域;④有理数集是一个数域.其中正确命题的序号为         .

 

查看答案和解析>>

科目:高中数学 来源: 题型:

当一个非空数集满足条件“如果,并且当时,”时,我们就称为一个数域.以下四个关于数域命题:①是任何数域的元素;②若数域中有非零元素,则;③集合是一个数域;④有理数集是一个数域.其中正确命题的序号为        

查看答案和解析>>

科目:高中数学 来源: 题型:

当一个非空数集满足条件“如果,并且当时,”时,我们就称为一个数域.以下四个关于数域命题:①是任何数域的元素;②若数域中有非零元素,则;③集合是一个数域;④有理数集是一个数域.其中正确命题的序号为        

查看答案和解析>>

同步练习册答案