【题目】如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
【答案】(1)见解析(2)见解析(3)
【解析】
(1)取CE的中点G,由三角形的中位线性质证明四边形GFAB为平行四边形,得到AF∥BG,从而证明AF∥平面BCE.
(2)通过证明AF⊥CD,DE⊥AF,从而证明AF⊥平面CDE,再利用BG∥AF证明BG⊥平面CDE,进而证明平面BCE⊥平面CDE.
(3)在平面CDE内,过F作FH⊥CE于H,由平面BCE⊥平面CDE,得 FH⊥平面BCE,故∠FBH为BF和平面BCE所成的角,解Rt△FHB求出∠FBH的正弦值.
(1)证明:取CE的中点G,连FG、BG.
∵F为CD的中点,∴GF∥DE且.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF平面BCE,BG平面BCE,
∴AF∥平面BCE.
(2)证明:∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.
∵DE⊥平面ACD,AF平面ACD,∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,∴BG⊥平面CDE.
∵BG平面BCE,
∴平面BCE⊥平面CDE.
(3)解:在平面CDE内,过F作FH⊥CE于H,连BH.
∵平面BCE⊥平面CDE,∴FH⊥平面BCE.
∴∠FBH为BF和平面BCE所成的角.
设AD=DE=2AB=2a,则,,
Rt△FHB中,.
∴直线BF和平面BCE所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形中,,,E为CD中点,将沿AE折到的位置.
(1)证明:;
(2)当折叠过程中所得四棱锥体积取最大值时,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列,的通项公式;
(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且,求;
(2)若无穷数列是等差数列,无穷数列是等比数列,,,.判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个三口之家,共个大人,个小孩,约定星期日乘红色、白色两辆轿车结伴郊游,每辆车最多乘坐人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、为椭圆()和双曲线的公共顶点,、分为双曲线和椭圆上不同于、的动点,且满足,设直线、、、的斜率分别为、、、.
(1)求证:点、、三点共线;
(2)求的值;
(3)若、分别为椭圆和双曲线的右焦点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆”现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高山滑雪运动的曲道赛项目中,运动员从高处(起点)向下滑,在滑行中运动员要穿过多个高约0.75米,宽4至6米的旗门,规定:运动员不经过任何一个旗门,都会被判一次“失格”,滑行时间会被增加,而所用时间越少,则排名越高.已知在参加比赛的运动员中,有五位运动员在滑行过程中都有三次“失格”,其中
(1)甲在滑行过程中依次没有经过,,三个旗门;
(2)乙在滑行过程中依次没有经过,,三个旗门;
(3)丙在滑行过程中依次没有经过,,三个旗门;
(4)丁在滑行过程中依次没有经过,,三个旗门;
(5)戊在滑行过程中依次没有经过,,三个旗门.
根据以上信息,,,,,,,,这8个旗门从上至下的排列顺序共有( )种可能.
A.6B.7C.8D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com