【题目】如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点,,并修建两段直线型道路,,规划要求:线段,上的所有点到点的距离均不小于圆的半径.已知点,到直线的距离分别为和(,为垂足),测得,,(单位:百米).
(1)若道路与桥垂直,求道路的长;
(2)在规划要求下,和中能否有一个点选在处?并说明理由;
(3)在规划要求下,若道路和的长度均为(单位:百米),求当最小时,、两点间的距离.
【答案】(1);(2),中不能有点选在点,理由详见解析;(3).
【解析】
(1) 设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,利用两直线垂直的条件得直线BP的方程,求解点P的坐标,再由两点间距离公式即可求解PB的长;
(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为-1,求得Q的坐标,即可得到结论;
(3)设P(a,0),Q(b,0),则,,结合条件分析,可得b的最小值,由两点的距离公式,计算可得PQ.
设与圆交于,连接,
为圆的直径,可得,
即有,,,
以为坐标原点,为轴,建立直角坐标系,则,,.
(1)设点,,
则,
即,
解得,所以,;
(2)当时,上的所有点到原点的距离不小于圆的半径,设此时,
则,即,解得,,
由,在此范围内,不能满足,上所有点到的距离不小于圆的半径,
所以,中不能有点选在点;
(3)设,,由(1)(2)可得,,
由两点的距离公式可得,
当且仅当时,取得最小值15,
又,则,当最小时,,,.
科目:高中数学 来源: 题型:
【题目】有两种理财产品和,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
产品:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
注:,
(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行六面体ABCD﹣A1B1C1D1中,所有棱长均为2,∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.
(1)求证:A1C⊥B1D1;
(2)求对角线AC1的长;
(3)求二面角C1﹣AB1﹣D1的平面角的余弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词,寻文化基因,品生活之美”为宗旨.每一期的比赛包含以下环节:“个人追逐赛”、“攻擂资格争夺赛”和“擂主争霸赛”,其中“擂主争霸赛”由“攻擂资格争夺赛”获胜者与上一场擂主进行比拼.“擂主争霸赛”共有九道抢答题,抢到并答对者得一分,答错则对方得一分,率先获得五分者即为该场擂主.在《中国诗词大会》的某一期节目中,若进行“擂主争霸赛”的甲乙两位选手每道抢答题得到一分的概率都是为0.5,则抢答完七道题后甲成为擂主的概率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;
(Ⅱ)设点.若直线与曲线C相交于A,B两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com