精英家教网 > 高中数学 > 题目详情

12.椭圆的焦点为,点在椭圆上,若,则_________;的小大为____________.

    


解析:

由椭圆定义有

.

由余弦定理得,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率为1的直L与椭C交于A(x1,y1)B(x2,y2)两点.
(Ⅰ)若椭圆的离心率e=
3
2
,直线l过点M(b,0),且
OA
OB
=-
12
5
,求椭圆C的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP
=λ(
OA
+
OB
)(λ>0),若点P在椭C上,λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=
3
2
S△DEF2=1-
3
2
.若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:中学教材标准学案 数学 高二上册 题型:044

解答题

已知椭圆=1的焦点为F1、F2,能否在x轴下方的椭圆弧上找到一点M,使M到下准线的距离|MN|等于点M到焦点F1、F2的距离的比例中项?若存在,求出M点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届江西省高三第四次月考理科数学试卷(解析版) 题型:填空题

已知椭圆的左焦点,为坐标原点,点在椭圆上,点在椭

圆的右准线上,若,则椭圆的离心率为  

 

查看答案和解析>>

同步练习册答案