精英家教网 > 高中数学 > 题目详情

【题目】如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为16,20,则输出的a=(

A.0
B.2
C.4
D.14

【答案】C
【解析】解:∵a=16,b=20,16<20,
可知:第一次运算可得:b=20﹣16=4;
∴a=16,b=4,4<16,
第二次运算可得:a=16﹣4=12;
∴a=12,b=4,4<12,
第三次运算可得:a=12﹣4=8;
∴a=8,b=4,4<8,
第四次运算可得:a=8﹣4=4;
此时a=b=4,输出a,即4.
故选:C.
利用更相减损术可得:a=16,b=20,16<20,可知:第一次运算可得:b=20﹣16=4;a=16,b=4,4<16,…,以此类推直到a=b即可结束.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos2x图象向左平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[﹣ ]上单调递减,且函数g(x)的最大负零点在区间(﹣ ,0)上,则φ的取值范围是(
A.[ ]
B.[
C.( ]
D.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,且f(a)=﹣3,则f(6﹣a)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣1|﹣|2x+3|.
(1)解不等式f(x)>2;
(2)关于x的不等式f(x)≤ a2﹣a的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2.

(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为 ,求锐二面角A﹣A1C﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinA, )与 =(3,sinA+ )共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应程序,输出的结果
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2﹣1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2.3).
(1)求a、r的值;
(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;
(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , a1=1,满足
(1)求证:数列 为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

同步练习册答案