精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆C: (a>b>0)的左、右焦点分别为F1、F2,若椭圆C经过点(0,),离心率为,直线l过点F2与椭圆C交于A、B两点.

(1)求椭圆C的方程;

(2)若点NF1AF2的内心(三角形三条内角平分线的交点),求F1NF2F1AF2面积的比值;

(3)设点A,F2,B在直线x=4上的射影依次为点D,G, E.连结AE,BD,试问当直线l的倾斜角变化时,直线AEBD是否相交于定点T?若是,请求出定点T的坐标;若不是,请说明理由.

【答案】(1) (2) (3)见解析.

【解析】分析:(1)由题可得b,结合椭圆可得椭圆方程;(2)因为点NF1AF2的内心,所以点NF1AF2的内切圆的圆心,然后结合内切圆的半径表示三角形的面积可得面积比值;(3)分直线斜率不存在和斜率存在时两种情况进行讨论,连立方程结合韦达定理求出AE方程得到定点再验证其在BD上即可得到结论.

解:(1)由题意,b=,又因为,所以,解得a=2,

所以椭圆C的方程为=1.

(2)因为点NF1AF2的内心,

所以点NF1AF2的内切圆的圆心,设该圆的半径为r.

.

(3)若直线l的斜率不存在时,四边形ABED是矩形,

此时AEBD交于F2G的中点(,0),

下面证明:当直线l的倾斜角变化时,直线AEBD相交于定点T(,0).

设直线l的方程为y=k(x-1),

化简得(3+4k2)x2-8k2x+4k2-12=0,

因为直线l经过椭圆C内的点(1,0),所以>0,

A(x1,y1),B(x2,y2),

x1+x2=,x1x2=.

由题意,D(4,y1),E(4,y2),

直线AE的方程为y-y2= (x-4),

x=,此时y=y2+×(-4)=

=0,

所以点T(,0)在直线AE上,

同理可证,点T(,0)在直线BD.

所以当直线l的倾斜角变化时,直线AEBD相交于定点T(,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为且对任意的实数都有是自然对数的底数),且若关于的不等式的解集中恰有两个负整数则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列判断正确的是(

A.为奇函数

B.对任意,,则有

C.对任意,则有

D.若函数有两个不同的零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其最小正周期为

(1)求 的表达式;

(2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到函数 的图象若关于 的方程 在区间 上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年8月18日,举世瞩目的第18届亚运会在印尼首都雅加达举行,为了丰富亚运会志愿者的业余生活,同时鼓励更多的有志青年加入志愿者行列,大会主办方决定对150名志愿者组织一次有关体育运动的知识竞赛(满分120分)并计划对成绩前15名的志愿者进行奖励,现将所有志愿者的竞赛成绩制成频率分布直方图,如图所示,若第三组与第五组的频数之和是第二组的频数的3倍,试回答以下问题:

(1)求图中的值;

(2)求志愿者知识竞赛的平均成绩;

(3)从受奖励的15人中按成绩利用分层抽样抽取5人,再从抽取的5人中,随机抽取2人在主会场服务,求抽取的这2人中其中一人成绩在分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数则使得成立的x的取值范围是(

A.-13B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在P地正西方向8kmA处和正东方向1kmB处各有一条正北方向的公路ACBD,现计划在ACBD路边各修建一个物流中心EF,为缓解交通压力,决定修建两条互相垂直的公路PEPF,设

为减少对周边区域的影响,试确定EF的位置,使的面积之和最小;

为节省建设成本,求使的值最小时AEBF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的各项为正数,且.

(1)求的通项公式;

(2)设,求证数列的前项和<2.

查看答案和解析>>

同步练习册答案