精英家教网 > 高中数学 > 题目详情
AB是过抛物线x2=y的焦点一条弦,若AB的中点到x轴的距离为1,则弦AB的长度为(  )
A.
5
2
B.
5
4
C.2D.3
根据抛物线方程可知抛物线准线方程为x=-
1
4

∵AB的中点到x轴的距离为1,
∴AB的中点到准线的距离为1+
1
4
=
5
4

∴根据抛物线的定义,可得弦AB的长度为2
5
4
=
5
2

故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两焦点分别为F1(-2
2
,0)、F2(2
2
,0),长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三角形△ABC的两顶点为B(-2,0),C(2,0),它的周长为10,求顶点A轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从圆O:x2+y2=4上任意一点P向x轴作垂线,垂足为P′,点M是线段PP′的中点,则点M的轨迹方程是(  )
A.
9x2
16
+
y2
4
=1
B.
9y2
16
+
x2
4
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
5
2
3

(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为-
1
2
,求斜率k的值;
②已知点M(-
7
3
,0)
,求证:
MA
MB
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为
1
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)在椭圆上任取一点P,过P点做y轴垂线段PQ,Q为垂足,当P在椭圆上运动时,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)有两个顶点在直线x+2y-2=0上
(1)求椭圆C的方程;
(2)当直线l:y=x+m与椭圆C相交时,求m的取值范围;
(3)设直线l:y=x+m与椭圆C交于A,B两点,O为坐标原点,若以为AB直径的圆过原点,求m的值.

查看答案和解析>>

同步练习册答案