精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线,直线.

(1)将曲线上所有点的横坐标、纵坐标分别伸长为原来的2倍、倍后得到曲线,请写出直线,和曲线的直角坐标方程;

(2)若直线经过点与曲线交于点,求的值.

【答案】(1);(2)2

【解析】分析:(1)根据极坐标和直角坐标系间的转化公式及变换公式可得所求的方程.(2)由题意可求得直线的参数方程,将其代入曲线的方程消元后得到关于参数的二次方程,然后根据参数的几何意义可得所求

详解(1)将代入,可得

∴直线的直角坐标方程为

设曲线上任一点坐标为,则,所以

代入

所以的方程为

(2)直线的倾斜角为

由题意可知直线的参数方程为为参数),

为参数)代入曲线的方程整理得

设点对应的参数分别为

由直线参数的几何意义可知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的定义域;

(2)时,解关于x的不等式:

(3)时,不等式对任意实数恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinωx)(ω0|φ|),xfx)的零点,xyfx)图象的对称轴,且fx)在()上单调,则ω的最大值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数定义域为,其导函数是,当时,有,则关于的不等式的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为上的奇函数,且.

(1)用定义证明:函数上是增函数;

(2)若实数t满足求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线 ,动圆过点,且与直线相切.

(Ⅰ)求动圆的圆心轨迹的方程;

(Ⅱ)过点的直线与曲线相交于 两点,分别过点 作曲线的切线 ,两条切线相交于点,求外接圆面积的最小值.

查看答案和解析>>

同步练习册答案