精英家教网 > 高中数学 > 题目详情
函数f(x)=(
1
3
)x-log2x
,正实数a,b,c成公比大于1的等比数列,且满足f(a)•f(b)•f(c)<0,若x0是方程f(x)=0的解,那么下列不等式中不可能成立的是(  )
分析:由于函数f(x)=(
1
3
)x-log2x
在其定义域(0,+∞)上是减函数,由条件可得0<a<b<c,且 f(c)<0,f(a)>0,再由x0是方程f(x)=0的解,即f(x0)=0,故有a<x0<c,由此得出结论.
解答:解:由于函数f(x)=(
1
3
)x-log2x
在其定义域(0,+∞)上是减函数,
∵正实数a,b,c成公比大于1的等比数列,
∴0<a<b<c.
∵f(a)f(b)f(c)<0,
则f(a)<0,f(b)<0,f(c)<0,或者f(a)>0,f(b)>0,f(c)<0,
综合以上两种可能,恒有 f(c)<0,f(a)>0.
再由x0是方程f(x)=0的解,即f(x0)=0,故有 a<x0<c,
故x0 >c 不可能成立,
故选D.
点评:本题主要考查函数的零点与方程的根的关系,等比数列的定义和性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(
1
3
)x-log2x
,若实数x0是函数的零点,且0<x1<x0,则f(x1)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
13
)x-log2x
,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
13
|x|3-ax2+(2-a)|x|+b
,若f(x)有六个不同的单调区间,则a的取值范围为
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
,则f′(x)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案