精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,AA1⊥底面ABCD,AD=1,AB=2,∠BAD=60°,E、F分别是侧棱BB1、CC1上一点,BE=1,CF=2,平面AEF与侧棱DD1相交于G.
(1)证明:平面AEFG⊥平面BB1C1C;
(2)求线段CG与平面AEFG所成角的正弦值;
(3)求以C为顶点,四边形AEFG在对角面BB1D1D内的正投影为底面边界的棱锥的体积.
分析:(1)先利用条件证明BD⊥平面AA1D1D,再推得GE∥BD⇒GE⊥平面BB1C1C⇒平面AEFG⊥平面BB1C1C.
(2)先利用条件证明CE⊥平面AEFG,⇒∠CGE是CG与平面AEFG所成的角,然后在△CGE中求线段CG与平面AEFG所成角的正弦值即可;
(3)因为四边形AEFG在对角面BB1D1B内的正投影为平行四边形,且点A的正投影为点D,所以找到底面积S=DG×GE=
3

高h=BC=1,再代入体积计算公式即可.
方法二:是用建立空间直角坐标系D-xyz的方法来求
(1)先利用条件找到平面AEFG的一个法向量和平面BB1C1C的一个法向量,再推得他们的数量积为0即可.
(2)把线段CG与平面AEFG所成角的正弦值转化为求平面AEFG的一个法向量与
GC
=(-1,
3
,-1)
所成角的余弦值的绝对值来求.
解答:解:(1)证明:连接BD,在△ABD中,由余弦定理得BD=
3

由勾股定理逆定理得∠ADB=90°,AD⊥BD,
又因为AA1⊥底面ABCD,AA1⊥BD,AA1∩AD=A,
所以BD⊥平面AA1D1D,因为平面AA1D1D∥平面BB1C1C,
所以AE∥FG,同理AG∥EF,所以AEFG是平行四边形,
所以AG=EF,
AD2+DG2
=
BC2+(CF-BE)2
,所以DG=CF-BE=1=BE,
连接EG,因为DG∥BE,所以BDGE是平行四边形,GE∥BD,
因为BD⊥平面AA1D1D,所以GE⊥平面BB1C1C,GE?平面AEFG,所以平面AEFG⊥平面BB1C1C.

(2)连接CE,因为CF=2、CE=
BC2+BE2
=
2
=EF,CF2=CE2+EF2,所以CE⊥EF,
因为平面AEFG⊥BB1C1C,平面AEFG∩BB1C1C=EF,CE?平面BB1C1C,所以CE⊥平面AEFG,
连接EG,则CE⊥EG,∠CGE是CG与平面AEFG所成的角,
因为CG=
CD2+DG2
=
5
,所以sin∠CGE=
CE
CG
=
2
5


(3)四边形AEFG在对角面BB1D1B内的正投影为平行四边形,且点A的正投影为点D,
所以底面积S=DG×GE=
3
(12分),
高h=BC=1(14分),所以棱锥的体积V=
1
3
Sh=
3
3

方法二:(1)连接BD,在△ABD中,由余弦定理得BD=
3

由勾股定理逆定理得∠ADB=90°,AD⊥BD,
又因为AA1⊥底面ABCD,所以以D为坐标原点,DA、DB、DD1
所在直线分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,
则A(1,0,0)、E(0,
3
,1)
F(-1,
3
,2)

设平面AEFG的一个法向量为
n1
=(a,b,c),则
n1
AE
=0
n1
EF
=0
-a+
3
b+c=0
-a+c=0

取a=1得
n1
=(1,0,1),平面BB1C1C的一个法向量为
n2
=(0,1,0),
因为
n1
n2
=0,所以平面AEFG⊥BB1C1C.

(2)设G(0,0,d),因为平面AA1D1D∥平面BB1C1C,所以AE∥FG,同理AG∥EF,
所以AEFG是平行四边形,所以
AG
=
EF

即(-1,0,d)=(-1,0,1),解得d=1,又C(-1,
3
,0)
,所以
GC
=(-1,
3
,-1)

设CG与平面AEFG所成角为θ,则sinθ=|cos<
n1
GC
>|=
|
n1
GC
|
|
n1
|•|
GC
|
=
2
5
点评:本题综合考查了平面和平面垂直的判定和性质以及线面角,几何体的体积计算.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2.
(Ⅰ)求证:C1D∥平面ABB1A1
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一点P,使得
AP
PA1
,当二面角A-B1C1-P的大小为300时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)从下列①②③三个条件中选择一个做为AC⊥BD1的充分条件,并给予证明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四边形.
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长都为1,且∠BAD为锐角,求平面BDD1与平面BC1D1所成锐二面角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

同步练习册答案