【题目】在平面直角坐标系xOy中,曲线:,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。
(1)求曲线的极坐标方程和直线l的直角坐标方程;
(2)设直线l与曲线交于不同的两点A,B,点M为抛物线的焦点,求的值。
科目:高中数学 来源: 题型:
【题目】若函数对任意的,均有,则称函数具有性质.
(1)判断下面两个函数是否具有性质,并证明:①();②;
(2)若函数具有性质,且(,),
①求证:对任意,有;
②是否对任意,均有?若有,给出证明,若没有,给出反例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).
根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差 ()具有线性相关关系.
(1)求绿豆种子出芽数 (颗)关于温差 ()的回归方程;
(2)假如4月1日至7日的日温差的平均值为11,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为4.
(1)求椭圆C的标准方程.
(2)设直线l过点(2,0)且与椭圆C相交于不同的两点A、B,直线与x轴交于点D,E是直线上异于D的任意一点,当时,直线BE是否恒过x轴上的定点?若过,求出定点坐标,若不过,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乐园按时段收费,收费标准为:每玩一次不超过小时收费10元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人参与但都不超过小时,甲、乙二人在每个时段离场是等可能的。为吸引顾客,每个顾客可以参加一次抽奖活动。
(1) 用表示甲乙玩都不超过小时的付费情况,求甲、乙二人付费之和为44元的概率;
(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示“中奖”,则该顾客中奖;若电脑显示“谢谢”,则不中奖,求顾客中奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,,,,将绕边AB翻转至,使面面ABC,D是BC的中点,设Q是线段PA上的动点,则当PC与DQ所成角取得最小值时,线段AQ的长度为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是菱形,,与交于点,底面,为的中点,.
(1)求证: 平面;
(2)求异面直线与所成角的余弦值;
(3)求与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com