精英家教网 > 高中数学 > 题目详情
17.已知直线x-y-2=0与曲线x2-y2=4m的交点P在圆(x-4)2+y2=4的内部,则实数m的取值范围是(  )
A.-1<m<3B.-3<m<-1C.1<m<3D.2<m<3

分析 求出直线与双曲线的交点坐标,以及圆的圆心的距离小于半径,求解即可.

解答 解:由题意可知:$\left\{\begin{array}{l}x-y-2=0\\{x}^{2}{-y}^{2}=4m\end{array}\right.$,解得$\left\{\begin{array}{l}x=m+1\\ y=m-1\end{array}\right.$,交点(m+1,m-1),
交点P在圆(x-4)2+y2=4的内部,
可得(m-3)2+(m-1)2<4,
解得1<m<3.
故选:C.

点评 本题考查直线与双曲线的位置关系,点与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,连接椭圆四个顶点形成的四边形面积为4$\sqrt{2}$,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设斜率为k(k≠0)的直线与离心率为$\frac{\sqrt{2}}{2}$的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点,P是线段AB的中点,直线OP的斜率为k′.
(Ⅰ)证明积kk′是定值;
(Ⅱ)若直线0P的倾斜角为$\frac{3π}{4}$时△OAB面积的最大值为$\frac{\sqrt{2}}{2}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知两点E(-1,0)和F(1,0),动点M满足$\overrightarrow{EM}•\overrightarrow{FM}$=0,设点M的轨迹为C,半抛物线C′:y2=2x(y≥0),设点$D(\frac{1}{2}\;,\;0)$.
(Ⅰ)求C的轨迹方程;
(Ⅱ)设点T是曲线C′上一点,曲线C′在点T处的切线与曲线C相交于点A和点B,求△ABD的面积的最大值及点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某人一次同时抛掷两枚均匀骰子(它们的六个面分别标有点数1、2、3、4、5、6)求:
(1)两枚骰子点数相同的概率;
(2)两枚骰子点数和为5的倍数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过抛物线y=x2上定点C(1,1)引两条互相垂直的弦CA、CB,作CM⊥AB,M为垂足,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设曲线y=3x-ln(x+a)在点(0,0)处的切线方程为y=2x,则a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(-x),\;\;x<0\\{3^{x-1}},\;\;\;\;\;\;\;\;\;\;x≥0\end{array}$,则f(1)=1,f(-6)=log26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1,F2分别是离心率为$\frac{3}{5}$的椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,P为椭圆E上一点,且△F1F2P的周长为16.
(1)求椭圆E的方程;
(2)若|PF1|=$\frac{16}{5}$,求点P到椭圆左顶点A的距离.

查看答案和解析>>

同步练习册答案