(本题满分12分)探究函数,的最小值,并确定取得最小值时的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中值随值变化的特点,完成下列问题:
(1) 当时,在区间上递减,在区间 上递增;
所以,= 时, 取到最小值为 ;
(2) 由此可推断,当时,有最 值为 ,此时= ;
(3) 证明: 函数在区间上递减;
(4) 若方程在内有两个不相等的实数根,求实数的取值范围。
科目:高中数学 来源: 题型:
(本题满分12分)已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层,…,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第个竖直通道(从左至右)的概率为,某研究性学习小组经探究发现小弹子落入第层的第个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)试求及的值,并猜想的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为,其中,试求的分布列
及数学期望.
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一上学期期中试题数学 题型:解答题
(本题满分12分)探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.
x |
… |
0.25 |
0.5 |
0.75 |
1 |
1.1 |
1.2 |
1.5 |
2 |
3 |
5 |
… |
y |
… |
8.063 |
4.25 |
3.229 |
3 |
3.028 |
3.081 |
3.583 |
5 |
9.667 |
25.4 |
… |
已知:函数在区间(0,1)上递减,问:
(1)函数在区间 上递增.当 时, ;
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)
查看答案和解析>>
科目:高中数学 来源:2010年河北省高一上学期期中考试数学试卷 题型:解答题
(本题满分12分)探究函数,的最小值,并确定取得最小值时的值,列表如下:
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
请观察表中值随值变化的特点,完成下列问题:
(1) 当时,在区间上递减,在区间 上递增;
所以,= 时, 取到最小值为 ;
(2) 由此可推断,当时,有最 值为 ,此时= ;
(3) 证明: 函数在区间上递减;
(4) 若方程在内有两个不相等的实数根,求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com