精英家教网 > 高中数学 > 题目详情
在四棱锥中,的中点,的中点,

(1)求证:
(2)求证:
(3)求三棱锥的体积.
(1)证明过程详见试题解析;(2)证明过程详见试题解析;(3).

试题分析:(1)由的中点,的中点,可得,平面,那么由线面平行的判定可以得到;(2)取的中点,连结,由于,,所以,那么,故,又,平面,有平面,得到,即,从而得到平面,从而得到; (3)要求三棱锥的体积,由(2)有为三棱锥的高,利用体积公式求出即可.
试题解析:(1)因为的中点,的中点,则在的中, 
 
∥平面.
(2)证明:取中点,连接.

中,
,
,则在等腰三角形. ①
又在中,,
 
因为平面平面,则
,即,则平面,所以 
因此. ②
,由①②知 平面
 
(3)由(1)(2)知 ,
因为平面,则平面 
因此为三棱锥的高
 
  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图①).将△ABD沿着AD折起到△AB′D的位置,连结B′C(如图②).

图①

图②
(1)若平面AB′D⊥平面ADC,求三棱锥B′-ADC的体积;
(2)记线段B′C的中点为H,平面B′ED与平面HFD的交线为l,求证:HF∥l;
(3)求证:AD⊥B′E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱中,中点,中点.

(1)求三棱柱的体积;
(2)求证:
(3)求证:∥面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为4的菱形ABCD中,∠DAB=60°,点EF分别在边CDCB上,点E与点CD不重合,EFACEFACO,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求证:BD⊥平面POA
(2)记三棱锥P­ABD体积为V1,四棱锥P­BDEF体积为V2,且,求此时线段PO的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线EF把四边形CDFE折起如图b,使平面CDFE⊥平面ABEF.

(1)求证:AB⊥平面BCE;
(2)求三棱锥C ­ADE体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求四面体B1C1CD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.

(Ⅰ)求证:EG//平面ABF;
(Ⅱ)求三棱锥B-AEG的体积;
(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱柱ABCA1B1C1,底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球的体积为,则该三棱柱的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三边长分别为4、5、6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P­ABC的体积为(  )
A.5 B.10
C.20 D.30

查看答案和解析>>

同步练习册答案