分析 设出圆的标准方程,利用待定系数法求出圆心和半径即可.
解答 解:设圆心坐标为(a,b),半径R,
∵圆C和x轴相切,∴R=|b|,
则圆C的方程为(x-a)2+(y-b)2=b2 (b>0)
∵过点(6,2),
∴(6-a)2+(2-b)2=b2 (b>0)
即(6-a)2+4-4b=0,①
∵圆与直线3x-4y-11=0相切,
∴圆心到直线的距离d=$\frac{|3a-4b-11|}{5}$=|b|,②
联立方程组解得$\left\{\begin{array}{l}{a=2}\\{b=5}\end{array}\right.$或$\left\{\begin{array}{l}{a=-2}\\{b=17}\end{array}\right.$,
故圆C的方程为(x-2)2+(y-5)2=25 或(x+2)2+(y-17)2=289.
点评 本题主要考查圆的方程的求解,根据直线和圆的位置关系求出圆心和半径是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2x+$\frac{1}{x}$ | B. | -2x-$\frac{1}{x}$ | C. | 2x-$\frac{1}{x}$ | D. | -2x+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com