精英家教网 > 高中数学 > 题目详情
(16)设函数.若是奇函数,则=          

解析:∵f′(x)=-sin(x+φ)

∴f(x)+f′(x)=cos(x+φ)-sin(x+φ)

∵作f(x)+f′(x)定义域为R,且为奇函数,

∴f(0)+f′(0)=0,即cosφ-sinφ=0

∴tanφ=    又∵0<φ<π

∴φ=.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:022

(2006全国I16)设函数.若是奇函数,则φ=________

查看答案和解析>>

科目:高中数学 来源:2013届江苏省江宁分校高二下学期期末数学试卷(解析版) 题型:解答题

 (本小题满分16分)

已知函数的定义域为(0,),且,设点P是函数图象上的任意一点,过点P分别作直线轴的垂线,垂足分别为M、N.

(1)求的值;

(2)问:是否为定值?若是,则求出该定值,若不是,请说明理由;

(3)设O为坐标原点,求四边形OMPN面积的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市高三上学期期中考试数学卷 题型:解答题

(本题满分16分,第1小题5分,第2小题6分,第3小题5分)

    已知函数,其中为常数,且

   (1)若是奇函数,求的取值集合A;

   (2)(理)当时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B;

   (文)当时,求的反函数;

   (3)(理)对于问题(1)(2)中的A、B,当时,不等式恒成立,求的取值范围。

   (文)对于问题(1)中的A,当时,不等式恒成立,求的取值范围。

 

查看答案和解析>>

同步练习册答案