【题目】已知双曲线,为坐标原点,离心率,点在双曲线上.
(1)求双曲线的方程;
(2)若直线与双曲线交于、两点,且.求的最小值.
【答案】(1);(2)24.
【解析】分析:(1)由双曲线的离心率可得关于、的一个方程,再把点代入双曲线的方程又得到关于、的一个方程,将以上方程联立即可解最后结果;(2)利用得,故而可得,再结合一元二次方程的根与系数的关系及弦长公式即可求出结果.
详解:(1)由,可得,∴,∴双曲线方程为,∵点在双曲线上,∴,解得,∴双曲线的方程为.
(2)①当直线的斜率存在时,设直线的方程为,由消去整理得,∵直线与双曲线交于,两点,
∴ .设,,
则,,由得到:,
即,∴,
化简.∵ ,
当时,上式取等号,且方程有解.
②当直线的斜率不存在时,设直线的方程为,则有,,
由可得,可得,解得,∴.
∴.综上可得的最小值是24.
科目:高中数学 来源: 题型:
【题目】如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组:表示的平面区域的面积是( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数,),以直角坐标系的原点为极点,以轴的正半轴为极轴建立坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程(化为标准方程)及曲线的普通方程;
(2)若圆与曲线的公共弦长为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;
(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查患胃病是否与生活规律有关,在某地对名岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.
(1)根据以上数据列出列联表;
(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | |||
学习成绩不优秀 | |||
合计 |
(1)根据以上统计数据,你是否有的把握认为使用智能手机对学习有影响?
(2)为进一步了解学生对智能手机的使用习惯,现从全校使用智能手机的高中生中(人数很多)随机抽取 人,求抽取的学生中学习成绩优秀的与不优秀的都有的概率.
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com