精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)判断并证明函数f(x)在其定义域上的奇偶性;
(2)证明函数f(x)在(1,+∞)上是增函数.

【答案】
(1)解:∵函数

∴a+1=2,∴a=1,

∴f(x)的定义域{x|x≠0}关于原点对称,

∴f(x)是定义域上的奇函数


(2)证明:任取x1,x2∈(1,+∞),且x1<x2

∵x1<x2,∴x1﹣x2<0,

又x1,x2∈(1,+∞),

∴x1x2>1x1x2﹣1>0,

∴f(x1)﹣f(x2)<0,

∴函数f(x)在(1,+∞)上是增函数


【解析】(1)由f(1)=2求出a的值,得f(x)的解析式,从而判定f(x)的奇偶性.(2)用单调性定义证明f(x)在(1,+∞)上的增减性.
【考点精析】认真审题,首先需要了解函数单调性的判断方法(单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较),还要掌握函数的奇偶性(偶函数的图象关于y轴对称;奇函数的图象关于原点对称)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.

(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;

(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的值满足f(x)<0,对任意实数x,y都有f(xy)=f(x)f(y),且f(﹣1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).
(1)求f(1)的值,判断f(x)的奇偶性并证明;
(2)判断f(x)在(0,+∞)上的单调性,并给出证明;
(3)若a≥0且f(a+1)≤ ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0, 是R上的函数,且满足f(﹣x)=f(x),x∈R.
(1)求a的值;
(2)证明f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若A={x|2x≤( x2},则函数y=( x(x∈A)的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

在区间上的极小值和极大值点。

上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:

患三高疾病

不患三高疾病

合计

6

30

合计

36

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 ,其中
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽 人,其中女性抽多少人?
(2)为了研究三高疾病是否与性别有关,请计算出统计量 ,并说明你有多大的把握认为三高疾病与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,测试成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.

(1)设m,n表示样本中两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:

根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

参考公式及数据:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828


(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由?

查看答案和解析>>

同步练习册答案