精英家教网 > 高中数学 > 题目详情
已知A、B、C是平面内不共线的三点,P为平面内的动点,且
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)  (λ>0)
,则P的轨迹过△ABC的(  )
A、重心B、垂心C、内心D、外心
分析:可先根据数量积为零求证
BC
与λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)垂直,设D为BC的中点,令λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=
DP
,可得点P在BC的垂直平分线上,从而得到结论.
解答:解:∵
BC
•(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=-|BC|+|BC|=0
BC
与λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)垂直
设D为BC的中点,则
OB
+
OC
2
=
OD

令λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=
DP

OB
+
OC
2
+λ(
AB
|
AB
| cosB
+
AC
|
AC
| cosC
)=
OD
+
DP
=
OP

∴点P在BC的垂直平分线上,即P的轨迹过△ABC的外心
故选D
点评:本题主要考查了空间向量的加减法,以及三角形的五心等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
,则点P一定为三角形ABC的(  )
A、AB边中线的中点
B、AB边中线的三等分点(非重心)
C、重心
D、AB边的中点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
]
(λ∈R且λ≠0),则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面内互异的三点,O为平面上任意一点,
OC
=x
OA
+y
OB
,求证:
(1)若A,B,C三点共线,则x+y=1;
(2)若x+y=1,则A,B,C三点共线.

查看答案和解析>>

同步练习册答案