精英家教网 > 高中数学 > 题目详情
20.已知△ABC的内角A、B、C对的边分别为a、b、c,若b=3,2c=a+3$\sqrt{2}$,则cosC最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 已知等式利用正弦定理化简,得到关系式,利用余弦定理表示出cosC,把得出关系式整理后代入,利用基本不等式求出cosC的最小值即可.

解答 解:∵2c=a+3$\sqrt{2}$,
∴两边平方得:4c2=a2+18+6$\sqrt{2}$a,
∴cosC=$\frac{{a}^{2}+9-{c}^{2}}{6a}$=$\frac{1}{8}$(a+$\frac{6}{a}$)-$\frac{\sqrt{2}}{4}$≥$\frac{\sqrt{6}-\sqrt{2}}{4}$(当且仅当a=$\sqrt{6}$时取等号),
则cosC的最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

点评 此题考查了余弦定理,以及基本不等式的运用,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\sqrt{x+3}$+$\frac{1}{lg(x+1)}$的定义域是(  )
A.(-1,0)∪(0,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆C:x2+y2-8x-8y+30=0,过曲线y=$\frac{1}{x}(x>0)$上的点P作圆C的切线,设点A为一个切点,则|PA|的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某批发站全年分批购入每台价值为3000元的电脑共4000台,每批都购入x台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函数y=f(x)-x-$\frac{a}{2}$恰有两个不同的零点,则实数a的取值范围是(  )
A.(0,2)B.(-∞,2)C.(-∞,2]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式|x|(a-x)≥9在x∈[2,+∞)总有解,则a的范围是[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)、g(x)、h(x)均为一次函数.若对实数x满足:
|f(x)|-|g(x)|+h(x)=$\left\{\begin{array}{l}{-2,x<-1}\\{7x+5,-1≤x<0}\\{-4x+5,x≥0}\end{array}\right.$,h(x)的解析式为.
A.2x-$\frac{3}{2}$B.-2x-$\frac{3}{2}$C.2x+$\frac{3}{2}$D.-2x+$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知0<x<1,0<a<1,试比较|loga(1-x)|和|loga(1+x)|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若sin(π+α)+cos($\frac{π}{2}$+α)=-m,则cos($\frac{3}{2}π$-α)+2sin(2π-α)的值为(  )
A.-$\frac{2m}{3}$B.$\frac{2m}{3}$C.-$\frac{3m}{2}$D.$\frac{3m}{2}$

查看答案和解析>>

同步练习册答案