精英家教网 > 高中数学 > 题目详情
设函数f(x)=-ax2,a∈R.
(1)当a=2时,求函数f(x)的零点;
(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点;
(3)若函数f(x)有四个不同的零点,求a的取值范围.
(1)0,x=,x=,x=(2)见解析(3)(1,+∞)
(1)解:当x≥0时,由f(x)=0,得-2x2=0,即x(2x2+4x-1)=0,解得x=0或x= (舍负);
当x<0时,由f(x)=0,得-2x2=0,
即x(2x2+4x+1)=0(x≠-2),解得x=.
综上所述,函数f(x)的零点为0,x=,x=,x=.
(2)证明:当a>0且x>0时,由f(x)=0,得-ax2=0,即ax2+2ax-1=0.
记g(x)=ax2+2ax-1,则函数g(x)的图象是开口向上的抛物线.
又g(0)=-1<0,所以函数g(x)在(0,+∞)内有且仅有一个零点,
即函数f(x)在区间(0,+∞)内有且仅有一个零点.
(3)解:易知0是函数f(x)的零点.
对于x>0,由(2)知,当a>0时,函数f(x)在区间(0,+∞)内有且仅有一个零点;
当a≤0时,g(x)=ax2+2ax-1<0恒成立,因此函数f(x)在区间(0,+∞)内无零点.
于是,要使函数f(x)有四个不同的零点,函数f(x)在区间(-∞,0)内就要有两个不同的零点.
当x<0时,由f(x)=0,得-ax2=0,即ax2+2ax+1=0(x≠-2).①
因为a=0不符合题意,所以①式可化为x2+2x+=0(x≠-2),即x2+2x=-=0.
作出函数h(x)=x2+2x(x<0)的图象便知-1<-<0,得a>1,
综上所述,a的取值范围是(1,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mx+3,g(x)=x2+2x+m.
(1)求证:函数f(x)-g(x)必有零点;
(2)设函数G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上的图象是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,则f +f =________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N),前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系式;
(2)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在上的零点个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

知函数y=f(x)的值域为C,若函数x=g(t)使函数y=f[g(t)]的值域仍为C,则称x=g(t)是y=f(x)的一个等值域变换,下列函数中,x=g(t)是y=f(x)的一个等值域变换的为(  )
A.f(x)=2x+b,x∈R,x=
B.f(x)=ex,x∈R,x=cost
C.f(x)=x2,x∈R,x=et
D.f(x)=|x|,x∈R,x=lnt

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.
(1)求出f(n)的表达式.
(2)求从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某种产品今年产量为1000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件.

查看答案和解析>>

同步练习册答案