精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,四边形ABCD是平行四边形,E、F分别为PA、BC的中点.
求证:EF平面PCD.
证明:取PD的中点G,连接EG、CG.…(1分)
因为AE=PE,PG=DG,
所以EGAD,且EG=
1
2
AD
.…(3分)
又因为四边形ABCD是平行四边形,且F是BC的中点.
所以CFAD,且CF=
1
2
AD
.…(4分)
所以CF
.
EG,所以四边形EFCG是平行四边形,
所以EFCG.
又因为EF?平面PCD,CG?平面PCD,
所以EF平面PCD.…(9分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四面体ABCD中,平面EFGH分别平行于棱CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.
(1)求证:四边形EFGH是矩形.
(2)设
DE
DB
=λ(0<λ<1)
,问λ为何值时,四边形EFGH的面积最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1,D,E,F分别为AB1,CC1,BC的中点.
(1)求证:DE平面ABC;
(2)求证:B1F⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,
又∠PDA为45°
(1)求证:AF平面PEC
(2)求证:平面PEC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC平面EBD,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,AB=2,∠PDA=45°,E、F分别是AB、PC的中点.
(1)求证:EF平面PAD;
(2)求异面直线EF与CD所成的角;
(3)若AD=3,求点D到面PEF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若a=2
2
,求证:AB平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(I)求证:直线AE⊥平面A1D1E;
(II)求三棱锥A-A1D1E的体积.

查看答案和解析>>

同步练习册答案