精英家教网 > 高中数学 > 题目详情

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

(1)  ,(2) 当时,,当时,, (3) .

解析试题分析:(1)新定义问题,必须从定义出发,实际是对定义条件的直译. 由,(2)由 性质知函数为偶函数. ∴时,∵单调增,∴时,,当时,∵单调减,在上单调增,又,∴时,,当时,∵单调减,在上单调增,又,∴时,. (3) ∵函数具有“性质” ∴∴函数是以2为周期的函数. 当时,为偶函数,因此易得函数是以1为周期的函数.结合图像得: ①当时,要使得有2013个交点,只要在区间有2012个交点,而在内有一个交点∴,从而得,②当时,同理可得,③当时,不合题意, 综上所述.
(1)由

∴函数具有“性质”,其中       2分
(2) ∵具有“性质”

,则,∴
              4分
时,∵单调增,∴时,      5分
时,∵

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)画出该函数的图像;
(2)设,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的奇偶性;
(2)若函数上为减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数a为常数且a>0.
(1)证明:函数f(x)的图像关于直线x=对称;
(2)若x0满足f(f(x0))= x0但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;
(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数满足条件.
(1)求
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为
(1)当时,求直路所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间;
(2)若不等式有解,求实数m的取值菹围;
(3)证明:当a=0时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的值域;
(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)a≥-2时,求F(x)=f(x)-g(x)的单调区间;
(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.

查看答案和解析>>

同步练习册答案