精英家教网 > 高中数学 > 题目详情
6、若函数f(x)=2-|x-1|-m的图象与x轴有交点,则实数m的取值范围是
0<m≤1
分析:题目中条件:“函数f(x)=2-|x-1|-m的图象与x轴有交点,”转化成函数m=2-|x-1|的图象与x轴有交点,即函数的值域问题求解.
解答:解:∵函数f(x)=2-|x-1|-m的图象与x轴有交点,
∴函数m=2-|x-1|的图象与x轴有交点,
∴即函数m=2-|x-1|的值域问题.
∴m=2-|x-1|的∈(0,1].
故填:0<m≤1.
点评:本题考查函数与方程思想在求解范围问题中的应用,函数与方程中蕴涵着丰富的数学思想方法,在解有关函数与方程问题时,应注意数学思想方法的挖掘、提炼、总结,以增强分析问题和解决问题的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•延安模拟)若函数f(x)=2+sin2ωx(ω>0)的最小正周期与函数g(x)=tan
x
2
的最小正周期相等,则正实数ω的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区一模)把下面不完整的命题补充完整,并使之成为真命题,若函数f(x)=2+log3x的图象与g(x)的图象关于
x轴
x轴
对称,则函数g(x)=
g(x)=-2-log3x
g(x)=-2-log3x
.(注:填上你认为可以成为真命题的一种答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2|x+7|-|3x-4|的最小值为2,求自变量x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2-|x|-x2+a有两个不同的零点,则实数a的取值范围是(  )
A、[1,+∞)B、(1,+∞)C、[-1,+∞)D、(-1,+∞)

查看答案和解析>>

同步练习册答案