精英家教网 > 高中数学 > 题目详情
已知二次函数y=ax2+2bx+c,其中a>b>c且a+b+c=0.
(1)求证:此函数的图象与x轴交于相异的两个点.
(2)设函数图象截x轴所得线段的长为l,求证:
3
<l<2
3
证明:(1)由a+b+c=0得b=-(a+c).
△=(2b)2-4ac=4(a+c)2-4ac
=4(a2+ac+c2)=4[(a+
c
2
2+
3
4
c2]>0.
故此函数图象与x轴交于相异的两点.
(2)∵a+b+c=0且a>b>c,
∴a>0,c<0.
由a>b得a>-(a+c),
c
a
>-2.
由b>c得-(a+c)>c,
c
a
<-
1
2

∴-2<
c
a
<-
1
2

l=|x1-x2|=
4(
c
a
+
1
2
)2+3

由二次函数的性质知l∈(
3
,2
3
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c在(-1,+∞)上为减函数,则f(0)>0,则直线ax+by+c=0不经过第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知二次函数y=x2+ax+b-3,x∈R的图象恒过点(1,0),则a2+b2的最小值为
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2+ax+5在区间[2,+∞)上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象经过原点,且f(x-1)=f(x)+x-1.
(1)求f(x)的表达式.
(2)设F(x)=4f(ax)+3a2x-1(a>0且a≠1),当x∈[-1,1]时,F(x)有最大值14,试求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二次函数y=x2+ax+b-3,x∈R的图象恒过点(1,0),则a2+b2的最小值为______.

查看答案和解析>>

同步练习册答案