【题目】下面四个命题,
(1)函数在第一象限是增函数;
(2)在中,“”是“”的充分非必要条件;
(3)函数图像关于点对称的充要条件是;
(4)若,则.
其中真命题的是_________.(填所有真命题的序号)
【答案】(3)
【解析】
(1)根据在第一象限内的图象可得单调区间,知(1)错误;
(2)由三角形大边对大角和正弦定理可证得应为充要条件,知(2)错误;
(3)将代入,利用整体对应的方式可求得,即知为充要条件,(3)正确;
(4)利用范围确定的范围,可得的符号;利用,结合同角三角函数关系和二倍角公式化简,根据可化简得到,知(4)错误.
(1)在第一象限中的单调区间为:,;并非在第一象限内是增函数,(1)错误;
(2)在中,若,则,由正弦定理知:,充分性成立;
若,由正弦定理知,则,必要性成立;
可知在中,“”是“”的充要条件,(2)错误;
(3)关于点对称,
,,(3)正确;
(4)当时, ,
又 ,(4)错误.
真命题为(3)
故答案为:(3)
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,渐近线方程为y=±x,且双曲线过点P(4,-).
(1)求双曲线的方程;
(2)若点M(x1,y1)在双曲线上,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内的“向量列”,如果对于任意的正整数,均有,则称此“向量列”为“等差向量列”,称为“公差向量”.平面内的“向量列”,如果且对于任意的正整数,均有(),则称此“向量列”为“等比向量列”,常数称为“公比”.
(1)如果“向量列”是“等差向量列”,用和“公差向量”表示;
(2)已知是“等差向量列”,“公差向量”,,;是“等比向量列”,“公比”,,.求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是
A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球
C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长轴为直径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知过点的动直线与椭圆的两个交点为,求的面积S的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com