精英家教网 > 高中数学 > 题目详情

已知一个等差数列共有2n+1项,其中奇数项之和为290,偶数项之和为261,则第n+1项为


  1. A.
    30
  2. B.
    29
  3. C.
    28
  4. D.
    27
B
分析:分别用a1,a2n+1表示出奇数项之和与所有项之和,两者相比等于进而求出n.
解答:∵奇数项和S1==290
∴a1+a2n+1=
∵数列前2n+1项和S2==290+261=551
===
∴n=28
∴n+1=29
故选B
点评:本题主要考查等差数列中的求和公式.熟练记忆并灵活运用求和公式,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个等差数列共有2n+1项,其中奇数项之和为290,偶数项之和为261,则第n+1项为(  )
A、30B、29C、28D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个等差数列共有2005项,那么它的偶数项之和与奇数项之和的比值是
1002
1003
1002
1003

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个等差数列共有2 005项,那么它的偶数项之和与奇数项之和的比值是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个等差数列共有2 005项,那么它的偶数项之和与奇数项之和的比值是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个等差数列共有2 005项,那么它的偶数项之和与奇数项之和的比值是__________.

查看答案和解析>>

同步练习册答案