精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=x3+bx(x∈R)在点(-1,f(-1))处的切线与直线y=-x+2a平行,则实数b的值-4.

分析 求出原函数的导函数,得到f′(1),由函数f(x)=x3+bx(x∈R)在点(-1,f(-1))处的切线与直线y=-x+2a平行即可求得b值.

解答 解:由f(x)=x3+bx,得f′(x)=3x2+b,
∴f′(1)=3+b,
∵函数f(x)=x3+bx(x∈R)在点(-1,f(-1))处的切线与直线y=-x+2a平行,
∴3+b=-1,解得b=-4.
故答案为:-4.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为${F_1},F_2^{\;}$,上、下顶点分别为B1,B2,右顶点为A,直线AB1与B2F1交于点D.若2|AB1|=3|B1D|,则C的离心率等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,菱形ABEF⊥直角梯形ABCD,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中点
(1)求证:平面AHC⊥平面BCE; 
(2)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}满足a2=2,点(a4,a6)在直线x+2y-16=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的位置关系是(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知3sin(π-α)+cos(2π-α)=0.
(1)求 $\frac{sinα+cosα}{2sinα-cosα}$
(2)求$\frac{{sin2α+{{cos}^2}α}}{2cos2α+sin2α+2}$
(3)求$tan(2α-\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△OMN中,点A在OM上,点B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则终点P落在四边形ABNM内(含边界)时,$\frac{y+x+2}{x+1}$的取值范围是(  )
A.$[\frac{1}{2},2]$B.$[\frac{1}{3},3]$C.$[\frac{3}{2},3]$D.$[\frac{4}{3},4]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知U=R,集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R,
(1)若a=0,求A∪B;
(2)若(∁UA)∩B≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图程序,若输出的结果是4,则输入的x的值是2.

查看答案和解析>>

同步练习册答案