精英家教网 > 高中数学 > 题目详情

【题目】下列几个命题

①奇函数的图象一定通过原点

②函数是偶函数,但不是奇函数

③函数f(x)=ax﹣1+3的图象一定过定点P,则P点的坐标是(1,4)

④若f(x+1)为偶函数,则有f(x+1)=f(﹣x﹣1)

⑤若函数在R上的增函数,则实数a的取值范围为[4, 8)

其中正确的命题序号为________

【答案】③⑤

【解析】

①若在原点无意义,则奇函数图象就不过原点;②可整理为y=0,既为奇函数又为偶函数③恒过的含义为无论参数a取何值,函数都过某一点;④利用偶函数的定义自变量x取相反数,函数值不变;⑤分段函数要使在整个区间单调,则必须每个区间都有相同的单调性,且在临界处满足单调性.

①奇函数的图象关于原点对称,若在原点有意义,则一定通过原点,故错误;

②函数的定义域为{﹣1,1},整理后y=0,即是偶函数,又是奇函数,故错误;

a0=1,当x=1时,f(1)=4,函数fx)=ax﹣1+3的图象一定过定点P(1,4),故正确;

④若fx+1)为偶函数,由偶函数定义可知f(﹣x+1)=fx+1),故错误;

⑤若函数R上的增函数,

a>1,且4﹣>0,f(1)≤a

∴实数a的取值范围为[4,8)故正确;

故正确答案为:为③⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,ABAC,且AA1=AB=AC,则异面直线AB1BC1所成角为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDE中四边形ABED是直角梯形,∠BAD=90°,DE∥AB,△ACD是的正三角形,CD=AB=DE=1,BC=

(1)求证:△CDE是直角三角形

(2) F是CE的中点,证明:BF⊥平面CDE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

(I)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点.若直线上存在点,使得四边形是平行四边形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为{x|x≠0}的函数f(x)满足:f(xy)=f(x)f(y),f(x)>0且在区间(0,+∞)上单调递增,若m满足f(log3m)+f( )≤2f(1),则实数m的取值范围是(
A.[ ,1)∪(1,3]
B.[0, )∪(1,3]
C.(0, ]
D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个对应f不是从集合A到集合B的函数的是( )

A. AB={-6,-3,1},f (1)=-3,

B. AB={x|x≥-1},f (x)=2x+1;

C. AB={1,2,3},f (x)=2x-1;

D. A=Z,B={-1,1},n为奇数时,f (n)=-1,n为偶数时,f (n)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为1的正方形,底面,点是棱的中点.

(1)求证:平面

(2)求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

(1)已画出函数轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;

⑵写出函数的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+bx(其中a,b为常数,a>0且a≠1,b>0且b≠1)的图象经过点A(1,6),

(Ⅰ)求函数f(x)的解析式;

(Ⅱ)若a>b,函数,求函数g(x)在[-1,2]上的值域.

查看答案和解析>>

同步练习册答案