精英家教网 > 高中数学 > 题目详情
方程+=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④f(x)的图象不经过第一象限,
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
【答案】分析:先根据题意画出方程+=-1的曲线即为函数y=f(x)的图象,如图所示.轨迹是两段双曲线的一部分加上一段的椭圆圆弧组成的图形.从图形中可以看出,关于函数y=f(x)的结论的正确性.
解答:解:根据题意画出方程+=-1的曲线即为函数y=f(x)的图象,如图所示.轨迹是两段双曲线的一部分加上一段的椭圆圆弧组成的图形.

从图形中可以看出,关于函数y=f(x)的有下列说法:
①f(x)在R上单调递减;正确.
②由于4f(x)+3x=0即f(x)=-,从而图形上看,函数f(x)的图象与直线y=-没有交点,故函数F(x)=4f(x)+3x不存在零点;正确.
③函数y=f(x)的值域是R;正确.
④f(x)的图象不经过第一象限,正确.
其中正确的个数是4.
故选D.
点评:本小题主要考查命题的真假判断与应用、函数单调性的应用、圆锥曲线的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程
x|x|
16
+
y|y|
9
=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程
y|y|
16
+
x|x|
9
=1确定的曲线.
其中所有正确的命题序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)方程
x|x|
16
+
y|y|
9
=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④f(x)的图象不经过第一象限,
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

方程数学公式+数学公式=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④f(x)的图象不经过第一象限,
其中正确的个数是


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省烟台市高三(上)期末数学试卷(理科)(解析版) 题型:选择题

方程+=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程+=1确定的曲线.
其中所有正确的命题序号是( )
A.①②
B.②③
C.①③④
D.①②③

查看答案和解析>>

同步练习册答案