精英家教网 > 高中数学 > 题目详情

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

5

18

19

6

1

图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;

(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.

附:

.

【答案】(Ⅰ)700件;(Ⅱ)见解析;(Ⅲ)见解析.

【解析】试题分析(Ⅰ)求出乙套设备生产的不合格品率,即可得出结论;(Ⅱ)根据表1和图1可得到列联表,然后利用公式,求出结果判断即可;(Ⅲ)由表1和图1可知甲乙的合格品率,甲套设备生产的产品的质量指标值主要集中在[105,115)之间,乙套设备生产的产品的质量指标值与甲套设备相比较为分散,即可得出结论.

试题解析:(Ⅰ)由图1知,乙套设备生产的不合格品率约为

∴乙套设备生产的5000件产品中不合格品约为(件).

(Ⅱ)由表1和图1得到列联表

甲套设备

乙套设备

合计

合格品

48

43

91

不合格品

2

7

9

合计

50

50

100

将列联表中的数据代入公式计算得

.

∴有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关.

(Ⅲ)由表1和图1知,甲套设备生产的合格品的概率约为,乙套设备生产的合格品的概率约为,甲套设备生产的产品的质量指标值主要集中在[105,115)之间,乙套设备生产的产品的质量指标值与甲套设备相比较为分散.因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线 两点,求点 的距离之积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量

1求函数的最小正周期及取得最大值时对应的x的值;

2在锐角三角形ABC中,角ABC的对边为abc,若,求三角形ABC面积的最大值并说明此时该三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求曲线在点处的切线方程

(Ⅱ)求证:

(Ⅲ)判断曲线是否位于轴下方,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在几何体中四边形ABCD为菱形对角线ACBD的交点为O四边形DCEF为梯形EFDCFDFB.

()DC2EF求证:OE∥平面ADF

()求证:平面AFC⊥平面ABCD

()ABFB2AF3BCD60°AF与平面ABCD所成角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩清况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:

甲校:

乙校:

(1)计算的值;

(2)若规定考试成绩在内为优秀,请根据样本估计乙校数学成绩的优秀率;

(3)由以上统计数据填写下面列联表,并判断是否有的把握认为两个学校的数学成绩有差异.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求证:当时,

)若函数在(1+∞)上有唯一零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为R的函数f(x),若f(x)在(-∞,0)和(0,+∞)上均有零点,则称函数f(x)为“含界点函数”,则下列四个函数中,不是“含界点函数”的是(  )

A. f(x)=x2bx-1(b∈R) B. f(x)=2-|x-1|

C. f(x)=2xx2 D. f(x)=x-sin x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,如果存在正实数,使得对任意,都有,且恒成立,则称函数上的“的型增函数”,已知是定义在上的奇函数,且在时, ,若上的“2017的型增函数”,则实数的取值范围是__________

查看答案和解析>>

同步练习册答案