精英家教网 > 高中数学 > 题目详情

【题目】共享单车是指企业的校园,地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,某共享单车企业为更好服务社会,随机调查了100人,统计了这100人每日平均骑行共享单车的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知骑行时间在三组对应的人数依次成等差数列

(1)求频率分布直方图中的值.

(2)若将日平均骑行时间不少于80分钟的用户定义为“忠实用户”,将日平均骑行时间少于40分钟的用户为“潜力用户”,现从上述“忠实用户”与“潜力用户”的人中按分层抽样选出5人,再从这5人中任取3人,求恰好1人为“忠实用户”的概率.

【答案】(1) ;(2) .

【解析】试题分析:(1)根据直方图各矩形面积和为可得,从而可得的值,在根据三组对应的人数依次成等差数列求出的值;(2)列举出这人中任选人共种情形,符合题设条件有共有种,根据古典概型概率公式可得恰好人为“忠实用户”的概率.

试题解析:(1)由

,所以.

(2)“忠实用户”“潜力用户”的人数之比为:

所以“忠实用户”抽取人,“潜力用户”抽取人,

记事件:从人中任取人恰有人为“忠实用户”

设两名“忠实用户”的人记为: ,三名“潜力用户”的人记为:

则这5人中任选3人有: ,共10种情形,

符合题设条件有: 共有6种,因此概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(导学号:05856290)[选修4-5:不等式选讲]

已知函数f(x)=|xa|+|x-2a|.

(Ⅰ)对任意x∈R,不等式f(x)>1成立,求实数a的取值范围;

(Ⅱ)当a=-1时,解不等式f(x)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856301)已知函数f(x)=m(x-1)exx2(m∈R),其导函数为f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856333)

已知椭圆C (a>b>0)的离心率为,其右焦点为F(c,0),第一象限的点A在椭圆C上,且AFx轴.

(Ⅰ)若椭圆C过点(1,- ),求椭圆C的标准方程;

(Ⅱ)已知直线lyxc与椭圆C交于MN两点,且B(4cyB)为直线l上的点,证明:直线AMABAN的斜率满足kAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)令,讨论的单调性并判断有无极值,若有,求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px0(1,1)xx0m0(mR)”是正确的,设实数m的取值集合为M.

(1)求集合M

(2)设关于x的不等式(xa)(xa2)<0(aR)的解集为N,若xMxN的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体ABCD-A′B′C′D′的外接球的体积为π,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为(  )

A. B. 3+ C. 3+ D. 或2+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为了解辖区住户中离退休老人每天的平均户外“活动时间”,从辖区住户的离退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外“活动时间”(单位:小时),活动时间按照…、从少到多分成9组,制成样本的频率分布直方图如图所示.

(1)求图中的值;

(2)估计该社区住户中离退休老人每天的平均户外“活动时间”的中位数;

(3)在这两组中采用分层抽样抽取7人,再从这7人中随机抽取2人,求抽取的两人恰好都在同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数, 是大于0的常数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为

(1)求圆的极坐标方程和圆的直角坐标方程;

(2)分别记直线 与圆、圆的异于原点的焦点为 ,若圆与圆外切,试求实数的值及线段的长.

查看答案和解析>>

同步练习册答案