精英家教网 > 高中数学 > 题目详情

【题目】《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.

【答案】

【解析】

观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。

八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。

∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20181024日,世界上最长的跨海大桥—港珠澳大桥正式通车。在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到220辆/千米,将造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米,车流速度为100千米/时研究表明:当时,车流速度v是车流密度x的一次函数.

1)当时,求函数的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

求直线l的普通方程及曲线C的直角坐标方程;

若直线l与曲线C交于AB两点,求线段AB的中点P到坐标原点O的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处的切线方程为

(1) 求的值;

(2) 证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3.

(1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.

(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018614日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:

观看世界杯

不观看世界杯

总计

40

20

60

15

25

40

总计

55

45

100

经计算的观测值.

附表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

参照附表,所得结论正确的是(

A. 以上的把握认为该小区居民是否观看世界杯与性别有关

B. 以上的把握认为该小区居民是否观看世界杯与性别无关

C. 在犯错误的概率不超过0.005的前提下,认为该小区居民是否观看世界杯与性别有关

D. 在犯错误的概率不超过0.001的前提下,认为该小区居民是否观看世界杯与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数f(x)的极值点的个数;

(2)若f(x)有两个极值点x1、x2,证明:f(x1)+f(x2)>3-4ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

同步练习册答案