精英家教网 > 高中数学 > 题目详情

已知为实数,是函数的一个极值点.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数的图象有3个交点,求的取值范围.

解:(Ⅰ),由得,
    ,解得.     ………………………………3分
(Ⅱ)由(Ⅰ)知,
,
.
时,
时,

时,.
所以的单调增区间是的单调减区间是.………8分
(Ⅲ)由(Ⅱ)知,内单调递增,在内单调递减,在上单调递增,且当时,.
所以的极大值为,极小值为.[
又因为,
.

当且仅当,直线的图象有三个交点.
所以,的取值范围为.   ……………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x 都有f (x)-x≥0,并且当x∈(0,2)时,有f (x)≤(
x+1
2
)2

(1)求f (1)的值;
(2)证明:ac≥
1
16

(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤-
1
2
或m≥
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x都有f(x)-x≥0,并且当x∈(0,2)时,有f(x)≤(
x+12
)2

(1)求f(1)的值;
(2)求ac的最小值;
(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f(x)-mx(m为实数)是单调的,求m取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省泉州市龙门中学高一(上)期中数学试卷(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x都有f(x)-x≥0,并且当x∈(0,2)时,有
(1)求f(1)的值;
(2)求ac的最小值;
(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f(x)-mx(m为实数)是单调的,求m取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届北京西城(北区)高二下学期学业测试理科数学试卷(解析版) 题型:选择题

设函数的定义域为R,如果存在函数为常数),使得对于一切实数都成立,那么称为函数的一个承托函数. 已知对于任意是函数的一个承托函数,记实数a的取值范围为集合M,则有(    )A.

B.

C.

D.

 

查看答案和解析>>

同步练习册答案