分析 由约束条件作出可行域,设出A,B的坐标,把向量数量积转化为线性目标函数,结合$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值时的最优解不唯一求得B点横坐标,则答案可求.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$作出可行域如图,
设A(x,y),B(a,1),
则z=$\overrightarrow{OA}$•$\overrightarrow{OB}$=ax+y,
要使$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值时的最优解不唯一,则
-a=-1或-a=2,即a=1或a=-2.
∴点B的横坐标是1或-2.
故答案为:1或-2.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$] | B. | [1-$\frac{π}{4}$,$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$] | C. | [0,$\frac{1}{2}$-$\frac{π}{12}$] | D. | [1-$\frac{π}{4}$,$\frac{1}{2}$-$\frac{π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({\frac{3}{2},+∞})$ | B. | (0,+∞) | C. | $({0,\frac{3}{2}})$ | D. | $({\frac{3}{2},3})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com