精英家教网 > 高中数学 > 题目详情
对函数f(x)=ax2+bx+c(a≠0),若存在x1,x2∈R且x1<x2,使得
1
f(x)
=
1
a
(
A
x-x1
+
B
x-x2
)
(其中A,B为常数),则称f(x))=ax2+bx+c(a≠0)为“可分解函数”.
(1)试判断f(x)=x2+3x+2是否为“可分解函数”,若是,求出A,B的值;若不是,说明理由;
(2)用反证法证明:f(x)=x2+x+1不是“可分解函数”;
(3)若f(x)=ax2+ax+4(a≠0),是“可分解函数”,则求a的取值范围,并写出A,B关于a的相应的表达式.
分析:(1)由于当f(x)=x2+3x+2时,
1
f(x)
=
1
x2+3x+2
=
-1
x-(-2)
+
1
x-(-1)
,根据“可分解函数”的概念,要得结论,并求出A,B值;
(2)假设f(x)=x2+x+1是“可分解函数”,根据“可分解函数”的定义及多项式相等的条件,可构造方程组,进而根据方程组无解,可得结论;
(3)若f(x)=ax2+ax+4(a≠0),是“可分解函数”,根据“可分解函数”的定义及多项式相等的条件,可构造方程组,求出A,B的表达式.
解答:解:(1)∵f(x)=x2+3x+2
1
f(x)
=
1
x2+3x+2
=
1
(x+2)(x+1)
=
-1
x-(-2)
+
1
x-(-1)

故函数f(x)=x2+3x+2为“可分解函数”,且A=-1,B=1
(2)假设f(x)=x2+x+1是“可分解函数”,即存在x1,x2∈R且x1<x2
使得
1
f(x)
=
1
a
(
A
x-x1
+
B
x-x2
)
=
1
x2+x+1

1
a
(
(A+B)x-(Ax2+Bx1)
x2-(x1+x2)x+x1x2
)=
1
x2+x+1

A+B=0
Ax2+Bx1=-1
x1+x2=-1
x1x2=1

由于方程组
x1+x2=-1
x1x2=1
无解,
所以假设不真,
故原命题成立.
即f(x)=x2+x+1不是“可分解函数”;
(3)因为f(x)=ax2+ax+4(a≠0),是“可分解函数”,
所以存在x1,x2∈R且x1<x2
使得
1
f(x)
=
1
a
(
A
x-x1
+
B
x-x2
)
=
1
a
(
(A+B)x-(Ax2+Bx1)
x2-(x1+x2)x+x1x2
)=
1
a
1
x2+x+
4
a

所以x2+x+
4
a
=0
有两个不同的实根,所以△=1-
16
a
>0
解得:a>16或a<0
此时方程x2+x+
4
a
=0
有两个不同的实根,
x1=
-1-
1-
16
a
2
x2=
-1+
1-
16
a
2

代入
A+B=0
Ax2+Bx1=-1
解得
A=-
a
a-16
B=
a
a-16
点评:本题以新定义“可分解函数”为载体考查了因式分解,反证法,及多项式相等的条件等知识点,是函数问题的综合应用,难度较大,正确理解新定义的概念,并由此构造相应的方程组是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax-bx2
(1)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2
b

(2)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2
b

(3)当0<b≤1时,讨论:对任意x∈[0,1],|f(x)|≤1的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).记数列{
1
bnbn+1
}前n项和为Tn
(1)求数列{an}和{bn}的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
>Tn恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域T;
(2)是否存在实数a,对任意给定的集合T中的元素t,在区间[1,e]上总存在两个不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范围;若不存在,请说明理由;
(3 )函数f(x)图象上是否存在两点A(x1,y1)和B(x2,y2),使得割线AB的斜率恰好等于函数f(x)在AB中点M(x0,y0)处切线的斜率?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)已知函数f(x)=ax+lnx(a∈R).
(1)若a=1,求曲线y=f(x)在x=
12
处切线的斜率;
(2)求函数f(x)的单调增区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)下列说法正确的是(  )

查看答案和解析>>

同步练习册答案