精英家教网 > 高中数学 > 题目详情
已知函数.
⑴ 设.试证明在区间  内是增函数;
⑵ 若存在唯一实数使得成立,求正整数的值;
⑶ 若时,恒成立,求正整数的最大值.
(1)证明见解析
(2) .
(3)正整数的最大值为3.
(1)因为所以.
 , 则, ∴ 内单调递增 .
解:(2) ∵,∴由(1)可得内单调递增,
存在唯一根, ∴ .
(3) 由恒成立,由(2)知存在唯一实数,
使且当时, ,∴ ,当时,,∴ .
∴ 当时,取得最小值 .               
, ∴ . 于是, ∵ ,
 ∴ ,故正整数的最大值为3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数 
(1)
(2)是否存在实数m,使函数恰有四个不同的零点?若存在求出的m范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数在两个极值点,且
(Ⅰ)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;

(II)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知函数为常数),若直线的图象都相切,且的图象相切于定点.     (1)求直线的方程及的值;(2)当时,讨论关于的方程的实数解的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的函数满足

的导函数,已知函数的图像如右图所示,
若两正数满足,则的取值范围是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数时取极值,且
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间上的值域为,试求、n应满足的条件。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,函数的图象与轴的交点也在函数的图象上,且在此点有公共切线.
(Ⅰ)求的值;
(Ⅱ)对任意的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明:若函数在点处可导,则函数在点处连续.
个是趋向的转化,另一个是形式(变为导数定义形式)的转化.

查看答案和解析>>

同步练习册答案