精英家教网 > 高中数学 > 题目详情

【题目】矩形中,,点分别是上的动点,将矩形沿所在的直线进行随意翻折,在翻折过程中直线与直线所成角的范围(包含初始状态)为( )

A.B.C.D.

【答案】C

【解析】

根据题意,可知初始状态时直线AD与直线BC所成的角为,当重合时,且当时,通过勾股定理的逆定理可得,再利用线面垂直的判定定理和性质可证出,即可得出在翻折过程中直线与直线所成角的范围.

解:由题可知,四边形是矩形,

所以初始状态时直线与直线所成的角为

已知矩形中,

由于点分别是上的动点,

当点分别在处时,即重合时,

翻折过程中,当时,如下图,

,所以

,所以平面

又因为平面,所以

此时直线与直线所成的角为

所以在翻折过程中直线与直线所成角的范围(包含初始状态)为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,平面平面,四边形是边长为4的正方形,分别是的中点.

(1)求证:平面

(2)若直线与平面所成角等于,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若是函数的两个不同零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论单调性;

(Ⅱ)当时,设函数存在两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为椭圆.

1分别为椭圆的左右焦点,为椭圆上任意一点,若,求的面积;

2)如图,若椭圆,椭圆,且),则称椭圆是椭圆倍相似椭圆.已知是椭圆倍相似椭圆,若椭圆的任意一条切线交椭圆于两点,试求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形的边长为12交于点,将菱形沿对角线折起,得到三棱锥,点是棱的中点,

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定口径误差的计算方式为:管件内外两个口径实际长分别为,标准长分别为口径误差只要口径误差不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.

(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;

(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的左顶点为D,且以点D为圆心的圆与双曲线C分别相交于点AB,如图所示.

1)求双曲线C的方程;

2)求的最小值,并求出此时圆D的方程;

3)设点P为双曲线C上异于点AB的任意一点,且直线PAPB分别与x轴相交于点MN,求证:为定值(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案